Description

传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。

Input

仅含一行,两个正整数 N, P。

Output

仅含一行,一个非负整数,表示你所求的答案对P取余 之后的结果。

Sample Input

4 7

Sample Output

3

HINT


对于 20%的数据,满足 N≤10;
对于 40%的数据,满足 N≤18;
对于 70%的数据,满足 N≤550;
对于 100%的数据,满足 3≤N≤4200,P≤109

题解:

非常强的思维题哈......

我们要明白一些关键的定理:

原问题是求波动数列的个数

(1).如果两个数i,i-1 且他们在数列中位置不相邻,那么交换他们两个,数列也为波动数列

(2).把一个波动数列同时变为n-i+1,那么依旧为波动序列,且某些山谷变山峰

所以我们设状态为f[i][j]表示:已经填了[1,i]这个范围的数,第一个数为j且j为峰顶的方案数

根据(1)可以得出f[i][j]=f[i][j-1] 因为交换j,j-1即可形成新方案 又因为我们强制j为峰顶,那么不会重复

根据(2)得:如果第二个数是j-1那么去掉第一个数j后,还剩[1,j-1]和[j+1,i]所以我们把后一个区间数都减1,就变成了一个[1,i-1]的排列,所以我们强制第二个数为j-1,且为谷,那么怎么转移呢?

因为满足(2)的对称性那么可以从f[i-1][(i-1)-(j-1)+1]得出不是吗?

综上f[i][j]=f[i][j-1]+f[i-1][i-j+1]

最后记得答案乘二,因为满足对称性

 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=;
int f[][N];
void work()
{
int n,mod;
scanf("%d%d",&n,&mod);
bool tt=,t=;
f[tt][]=;
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
f[t][j]=(f[t][j-]+f[tt][i-j+])%mod,f[t][j]%=mod;
}
t^=;tt^=;
}
int ans=;
for(int i=;i<=n;i++)
ans+=f[tt][i],ans%=mod;
printf("%d\n",(ans<<)%mod);
} int main()
{
work();
return ;
}

bzoj 1925: [Sdoi2010]地精部落的更多相关文章

  1. BZOJ 1925: [Sdoi2010]地精部落( dp )

    dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...

  2. bzoj 1925 [Sdoi2010]地精部落(DP)

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

  3. BZOJ 1925[Sdoi2010]地精部落 题解

    题目大意: 1~n的排列中,要任意一个数要么比它左右的数都大或小,求所有的方案数. 思路: 主要思路:离散. 三个引理: ①在n->n-1的转化过程中,我们删除了一个点后,我们可以将n-1个点视 ...

  4. bzoj 1925: [Sdoi2010]地精部落【dp】

    设[f[i][j]为1到i,开头数字是j并且是山峰的方案数 注意到当数字j和j-1不相邻时,交换它们会得到一个新的符合要求的序列,所以f[i][j]+=f[i][j-1]; 如果相邻,那么j是山峰,j ...

  5. 1925: [Sdoi2010]地精部落

    1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1929 Solved: 1227 [Submit][Statu ...

  6. 【BZOJ】1925: [Sdoi2010]地精部落 DP+滚动数组

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 题意:输入一个数N(1 <= N <= 4200),问将这些数排列成折线 ...

  7. 【BZOJ1925】[SDOI2010]地精部落(动态规划)

    [BZOJ1925][SDOI2010]地精部落(动态规划) 题面 BZOJ 洛谷 题解 一道性质\(dp\)题.(所以当然是照搬学长PPT了啊 先来罗列性质,我们称题目所求的序列为抖动序列: 一个抖 ...

  8. BZOJ_1925_[Sdoi2010]地精部落_递推

    BZOJ_1925_[Sdoi2010]地精部落_递推 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 ...

  9. 【BZOJ1925】[Sdoi2010]地精部落 组合数+DP

    [BZOJ1925][Sdoi2010]地精部落 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从 ...

随机推荐

  1. servlet线程同步问题-代码实现同步(转)

    从servlet的生命周期中,我们知道,当第一次访问某个servlet后,该servlet的实例就会常驻 内存,以后再次访问该servlet就会访问同一个servlet实例,这样就带来多个用户去访问一 ...

  2. VS2013 重装 无法打开项目

    今天遇到的奇葩BUG,耗时我一下午,现在跟大家说道说道. 今天重装系统,让各种开发环境开发工具自然要重装一次,最后装完VS2013,然后刚好客户打电话要改点东西,然后我就双击项目准备打开改,然后奇葩来 ...

  3. SSM框架中前端页面(AJAX+Jquery+spring mvc+bootstrap)

    前端新增页面的模态框,采用bootstarp建立.定义了empName,email,gender,depatName,四个属性的ID:其中保存按钮的ID:emp_save_btn,对应的点击函数如下: ...

  4. java排序算法之冒泡排序(Bubble Sort)

    java排序算法之冒泡排序(Bubble Sort) 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一趟:首先比较第1个和第2个数 ...

  5. [UWP]针对UWP程序多语言支持的总结,含RTL

    UWP 对 Globalization and localization 的支持非常好,可以非常容易地实现应用程序本地化. 所谓本地化,表现最为直观的就是UI上文字和布局方式了,针对文字,提供不同的语 ...

  6. vue-cli webpack3扩展多模块打包

    场景 在实际的项目开发中会出现这样的场景,项目中需要多个模块(单页或者多页应用)配合使用的情况,而vue-cli默认只提供了单入口打包,所以就想到对vue-cli进行扩展 实现 首先得知道webpac ...

  7. spring-oauth-server实践:授权方式三:PASSWORD模式下 authorities:ROLE_{user.privillege}, ROLE_USER

    一.数据库配置 1.oauth_client_details 2.user_ 3.user_privillege 二.password模式 授权过程 1.授权者granter和请求参数 Resourc ...

  8. 生成git私钥

    在git已经安装的情况下,输入命令: 一.设置git的user name和email git config —(此处两个横杠)global user.name “XXX” git config —(此 ...

  9. Python面向对象进阶示例--自定义数据类型

    需求: 基于授权定制自己的列表类型,要求定制的自己的__init__方法, 定制自己的append:只能向列表加入字符串类型的值 定制显示列表中间那个值的属性(提示:property) 其余方法都使用 ...

  10. Hive:insert into table 与 insert overwrite table 区别

    创建测试表,来测试看看测试结果: create table test(name string,pwd string,createdate string)row format delimited fie ...