J. Ceizenpok’s formula
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: n, k and m, and its value is a number of k-combinations of a set of n modulo m.

While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

Input

Single line contains three integers n, k, m, separated with spaces (1 ≤ n ≤ 1018, 0 ≤ k ≤ n, 2 ≤ m ≤ 1 000 000).

Output

Write the formula value for given arguments n, k, m.

Sample test(s)
input
2 1 3
output
2
input
4 2 5
output
1
/*
2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理) 求C(n,k)%m
如果m是素数的话直接就能套lucas模板.
对于m为合数,我们可以把它分解成素数在进行处理 m = p1*p2*p3..pk (pk = prime[i]^t)
然后利用扩展lucas定理可以求出 C(n,k) % pi的值,最后利用中国剩余定理 涨姿势:http://www.cnblogs.com/jianglangcaijin/p/3446839.html
题目链接:http://codeforces.com/gym/100633/problem/J
hhh-2016-04-16 13:07:05
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <functional>
typedef long long ll;
#define lson (i<<1)
#define rson ((i<<1)|1)
using namespace std; const int maxn = 1e6+10;
ll fac[maxn];
int w[maxn],num[maxn],tw[maxn];
int tot;
void get_factor(ll m)
{
ll mm = m;
tot = 0;
for(ll i = 2; i*i <= m; i++)
{
if(mm % i == 0)
{
num[tot] = 0;
w[tot] = i;
tw[tot] = 1;
while(mm % i == 0)
{
num[tot]++;
mm /= i;
tw[tot] *= i;
}
tot++;
}
}
if(mm > 1)
{
num[tot] = 1;
w[tot] = mm;
tw[tot] = mm;
tot ++;
}
} ll ex_gcd(ll a,ll b,ll &x,ll &y)
{
if(a == 0 && b == 0)
return -1;
if(b == 0)
{
x = 1,y = 0;
return a;
}
ll d = ex_gcd(b,a%b,y,x);
y -= a/b*x;
return d;
} ll pow_mod(ll a,ll b,ll mod)
{
ll ret = 1;
while(b)
{
if(b&1) ret = ret*a%mod;
a = a*a%mod;
b >>= 1;
}
return ret;
} ll revers(ll a,ll b)
{
ll x,y;
ll d = ex_gcd(a,b,x,y);
if(d == 1) return (x%b+b)%b;
else return 0;
} ll c1(ll n,ll p,ll pk)
{
if(n==0)return 1;
ll ans=1;
for(ll i = 2; i <= pk; i++)
if(i % p)
ans = ans*i%pk;
ans=pow_mod(ans,n/pk,pk);
for(ll k=n%pk,i=2; i<=k; i++)if(i%p)ans=ans*i%pk;
return ans*c1(n/p,p,pk)%pk;
} ll cal(ll n,ll m,int cur,ll mod)
{
ll pi = w[cur],pk = tw[cur];
ll k = 0,ans;
ll a,b,c;
a=c1(n,pi,pk),b=c1(m,pi,pk),c=c1(n-m,pi,pk); for(ll i=n; i; i/=pi)k+=i/pi;
for(ll i=m; i; i/=pi)k-=i/pi;
for(ll i=n-m; i; i/=pi)k-=i/pi; ans = a*revers(b,pk)%pk*revers(c,pk)%pk*pow_mod(pi,k,pk)%pk;
return ans*(mod/pk)%mod*revers(mod/pk,pk)%mod;
} ll lucas(ll n,ll m,ll mod)
{
ll ans = 0;
for(int i = 0; i < tot; i++)
{
ans = (ans+cal(n,m,i,mod))%mod;
}
return ans;
} ll n,k;
ll m;
int main()
{
int T;
while(scanf("%I64d%I64d%I64d",&n,&k,&m) != EOF)
{
get_factor(m);
printf("%I64d\n",lucas(n,k,m));
}
return 0;
}

  

2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)的更多相关文章

  1. 2015 ICL, Finals, Div. 2【ABFGJK】

    [题外话:我......不补了......] 2015 ICL, Finals, Div. 2:http://codeforces.com/gym/100637 G. #TheDress[水] (st ...

  2. CF 2015 ICL, Finals, Div. 1 J. Ceizenpok’s formula [Lucas定理]

    http://codeforces.com/gym/100633/problem/J Lucas定理P不是质数裸题 #include <iostream> #include <cst ...

  3. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula 扩展Lucas定理 扩展CRT

    默默敲了一个下午,终于过了, 题目传送门 扩展Lucas是什么,就是对于模数p,p不是质数,但是不大,如果是1e9这种大数,可能没办法, 对于1000000之内的数是可以轻松解决的. 题解传送门 代码 ...

  4. Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理

    http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...

  5. GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula time limit per test 2.0 s memory limit per test 256 MB input standard input o ...

  6. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula【扩展lucas】

    传送门 [题意]: 求C(n,k)%m,n<=108,k<=n,m<=106 [思路]: 扩展lucas定理+中国剩余定理    #include<cstdio> usi ...

  7. [Codeforces 100633J]Ceizenpok’s formula

    Description 题库链接 求 \[C_n^m \mod p\] \(1\leq m\leq n\leq 10^{18},2\leq p\leq 1000000\) Solution 一般的 \ ...

  8. codeforces Gym - 100633J Ceizenpok’s formula

    拓展Lucas #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  9. Codeforces.100633J.Ceizenpok's formula(扩展Lucas)

    题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...

随机推荐

  1. Ubuntu下tomcat或eclipse启动提示没有java环境问题

    tomcat和eclipse默认使用了openjdk,通过压缩包安装的jdk无法被识别,通过修改tomcat/bin下的catalina.sh添加jdk和jre路径即可 sudo gedit cata ...

  2. scrapy 爬取当当网产品分类

    #spider部分import scrapy from Autopjt.items import AutopjtItem from scrapy.http import Request class A ...

  3. 标准C++类std::string的内存共享和Copy-On-Write(写时拷贝)

    标准C++类std::string的内存共享,值得体会: 详见大牛:https://www.douban.com/group/topic/19621165/ 顾名思义,内存共享,就是两个乃至更多的对象 ...

  4. 关于mule中Spring使用中的一个问题

    在mule中连接数据库时,大家通常喜欢使用spring的数据库连接以及bean的配置,但是在使用时会出现一些问题,即bean无法找到,这些,就是需要把bean的id属性改成name属性:可能是因为mu ...

  5. [ZLXOI2015]殉国

    2057. [ZLXOI2015]殉国 http://cogs.pro/cogs/problem/problem.php?pid=2057 ★☆   输入文件:BlackHawk.in   输出文件: ...

  6. Angular组件——组件生命周期(一)

    组件声明周期以及angular的变化发现机制 红色方法只执行一次. 变更检测执行的绿色方法和和组件初始化阶段执行的绿色方法是一个方法. 总共9个方法. 每个钩子都是@angular/core库里定义的 ...

  7. 微信支付get_brand_wcpay_request:fail

    最近做了微信支付功能,和后端一起踩坑中,微信一直报错:get_brand_wcpay_request:fail 出现该问题的原因: 1.生成的sign签名有问题 2.支付授权目录配置有问题 在经过仔细 ...

  8. pythoncharm 中解决启动server时出现 “django.core.exceptions.ImproperlyConfigured: Requested setting DEBUG, but settings are not configured”的错误

    背景介绍 最近,尝试着用pythoncharm 这个All-star IDE来搞一搞Django,于是乎,下载专业版,PJ等等一系列操作之后,终于得偿所愿.可以开工了. 错误 在园子里找了一篇初学者的 ...

  9. 原生JavaScript实现页面回到顶部的功能

    /*如果想实现点击一个按钮让滚动条回到最顶部的功能,首先可能就会想到它是从底部位置移动到顶部的位置 它是一个运动的过程,只要知道当前位置(current Position)和想要到达的位置(targe ...

  10. leetcode算法: Keyboard Row

    Given a List of words, return the words that can be typed using letters of alphabet on only one row' ...