「JSOI2010」挖宝藏
「JSOI2010」挖宝藏
传送门
由于题目中说道挖一个位置的前提是挖掉它上面的三个,以此类推可以发现,挖掉一个点就需要挖掉这个点往上的整个倒三角,那么也就会映射到 \(x\) 轴上的一段区间(可以发现这种映射关系是一一对应的),那么我们就可以用一段区间来代表一个宝藏。
然后我们就先把所有区间按照右端点递增其次左端点递增排序。
接着考虑 \(\text{DP}\) ,我们设 \(dp_i\) 表示前 \(i\) 个区间中强制选第 \(i\) 个区间的最大利润,
那么在枚举转移点 \(j\) 时就会出现 \(i\) ,\(j\) 有交的情况,就会有一部分代价被多算。
此外还有一种情况就是一个区间完全覆盖另一个的情况,这个时候如果我们选那个较大的区间肯定会顺带选了那个较小的,
因为此时那个较小区间的代价就不用算了,所以我们可以预处理出单选一个区间的最大利润(它自己的价值以及被它覆盖的所有区间的价值之和 - 它自己的代价),
但我们又会发现,转移时会出现 \(i\) , \(j\) 两个区间同时覆盖一个小区间,导致那个小区间的价值被算重的情况,
所以我们干脆对于两个区间有交的情况我们暴力地去算可能被算重的价值即可,
具体来说就是枚举到 \(i\) 的时候,维护一个指针指向我们需要计算的区间,因为这个指针只会右移,所以我们转移的复杂度还是 \(O(n)\) 的,总复杂度也就是 \(O(n^2)\) 的。
如果有不懂的可以结合代码理解,还可以画图自己研究研究。
参考代码:
#include <algorithm>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 1002;
int n, dp[_]; struct node { int l, r, p1, p2, c; } t[_];
inline bool cmp(const node& x, const node& y) { return x.r != y.r ? x.r < y.r : x.l < y.l; }
inline int calc(int l, int r) { return (r - l + 2) * (r - l + 2) / 4; }
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
for (rg int x, y, p, i = 1; i <= n; ++i)
read(x), read(y), read(p), t[i] = (node) { x + y + 1, x - y - 1, p, 0, calc(x + y + 1, x - y - 1) };
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= n; ++j)
if (t[i].l <= t[j].l && t[j].r <= t[i].r) t[i].p2 += t[j].p1;
sort(t + 1, t + n + 1, cmp);
for (rg int i = 1; i <= n; ++i) {
dp[i] = t[i].p2 - t[i].c;
int nxt = 1, sum = 0;
for (rg int j = 1; j < i; ++j) {
if (t[j].r < t[i].l) dp[i] = max(dp[i], dp[j] + t[i].p2 - t[i].c);
if (t[j].l < t[i].l && t[i].l <= t[j].r) {
while (nxt <= i && t[nxt].r <= t[j].r) {
if (t[nxt].l >= t[i].l) sum += t[nxt].p1; ++nxt;
}
dp[i] = max(dp[i], dp[j] + t[i].p2 - t[i].c - (sum - calc(t[i].l, t[j].r)));
}
}
}
int ans = 0;
for (rg int i = 0; i <= n; ++i) ans = max(ans, dp[i]);
printf("%d\n", ans);
return 0;
}
「JSOI2010」挖宝藏的更多相关文章
- 「JSOI2010」排名
「JSOI2010」排名 传送门 看到先后顺序限制和字典序,很容易想到拓扑排序 + 贪心. 考虑具体做法: 对于第一问: 我们开一个大根堆来代替队列,然后从大到小构造出各个元素的排名. 我们连边 \( ...
- 「JSOI2010」找零钱的洁癖
「JSOI2010」找零钱的洁癖 传送门 个人感觉很鬼的一道题... 首先我们观察到不同的数最多 \(50\) 个,于是考虑爆搜. 但是这样显然不太对啊,状态数太多了. 然后便出现了玄学操作: \(\ ...
- 「JSOI2010」旅行
「JSOI2010」旅行 传送门 比较妙的一道 \(\text{DP}\) 题,思维瓶颈应该就是如何确定状态. 首先将边按边权排序. 如果我们用 \(01\) 串来表示 \(m\) 条边是否在路径上, ...
- 【LOJ】 #2520. 「FJOI2018」所罗门王的宝藏
题解 发现似乎相当于问一个2000个元的方程组有没有解-- 然而我懵逼啊-- 发现当成图论,两个点之间连一条边,开始BFS,每个点的值赋成边权减另一个点的点权 如果一个环不合法那么肯定无解 代码 #i ...
- LG4171/BZOJ1823 「JSOI2010」满汉全席 2-SAT
问题描述 LG4171 BZOJ1823 题解 显然,每个评委对每个材料的满式/汉式要求是对\(n\)个元素的\(0,1\)取值限制. 显然想到\(\mathrm{2-SAT}\) 于是就可以切掉了. ...
- 「JSOI2010」满汉全席
前言 由于蒟蒻才刚开始学 \(\text{2-SAT}\),所以题解中有的地方可能不够精炼,望多包涵! 题目描述 题目意思很简单,标准的\(\text{2-SAT}\)问题模型.那么我们就先来介绍一下 ...
- 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)
「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...
- 「NOIP2017」宝藏
「NOIP2017」宝藏 题解 博客阅读效果更佳 又到了一年一度NOIPCSP-S 赛前复习做真题的时间 于是就遇上了这道题 首先观察数据范围 \(1 \le n \le 12\) ,那么极大可能性是 ...
- loj #2037. 「SHOI2015」脑洞治疗仪
#2037. 「SHOI2015」脑洞治疗仪 题目描述 曾经发明了自动刷题机的发明家 SHTSC 又公开了他的新发明:脑洞治疗仪——一种可以治疗他因为发明而日益增大的脑洞的神秘装置. 为了简单起见 ...
随机推荐
- HTML入门归纳--JavaScript
本人一直在从事.net的开发,界面都是采用的WPF,近期花了一个多月进行HTML前端的学习,在这里呢进行学习总结和归纳. 本系列将主要分为4个模块: 控件 样式 布局 JavaScript 根据多年W ...
- Spark编程基础_RDD初级编程
摘要:Spark编程基础_RDD初级编程 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...
- AcWing 868. 筛质数 线性筛法
#include <iostream> #include <algorithm> using namespace std; ; int primes[N], cnt; bool ...
- 【转】Chrome——F12 谷歌开发者工具详解
Chrome——F12 谷歌开发者工具详解 console source network
- PyCharm 上传项目到码云托管平台
码云平台设置: >先到码云 https://gitee.com/ 注册账号 >创建项目,选择合适项目,点击加号 >填写项目的基础信息 在码云上就创建了项目 >安装 Git ...
- P & R 8
Floorplan: 要做好floorplan需要掌握哪些知识跟技能? 通常,遇到floorplan问题,大致的debug步骤跟方法有哪些? 如何衡量floorplan的QA? T:Block lev ...
- 7、Java类型转换
类型转换 自动类型转换 自动类型转换指的是容量小的数据类型可以自动转换为空量大的数据类型.(容量大小不是看字节数来定的,是按照类型可以容纳多的数来定的,所以long,可以自动转为float) //特例 ...
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:RNN和CNN混合的鸡尾酒疗法提升网络运行效率
from keras.layers import model = Sequential() model.add(embedding_layer) #使用一维卷积网络切割输入数据,参数5表示每各个单词作 ...
- Codeforces Round #618 E
题意: 给你一个n的数组,你可以进行无数次,选择区间使得区间内的值相加,然后区间的所有的值变成平均值. 使得最后数组的字典序最小 思路: 最后的数组一定是单调递增的,只要它比之前的平均值数大,就不会操 ...
- Navicat连接远程主机(腾讯云服务器)的mysql失败,解决
赋予所有用户远程连接的权限,重启mysql即可连接成功: grant all privileges on . to 'root'@'%' identified by 'admin'; systemct ...