题目大意

给出一个01矩阵,这个矩阵有一个特殊的性质: 对于任意两个 \(1\) 之间最多只有 \(1\) 条由 \(1\) 构成的路径.每次询问给出一个矩形范围,查询在这个范围内的联通快个数.

分析

先从给出的性质出发,可以发现如果在所有相邻的 \(1\) 之间连上一条边(双向边)以后这个性质就转化成了在这若干个 \(1\) 所组成的图中不会出现环,在仔细思考一下,不会出现环,而且是双向边,这意味着什么?没错,这是一片森林(由很多组成),对于每一颗树就是一个联通快了,可以发现这既然是树,那么如果它被残忍地切开后它仍然是一颗树,于是对于矩阵查询并不会对于每个联通块都是一棵树这个性质产生影响,于是就很容易想到树有什么性质,其中有一个非常特殊的性质,一棵有 \(N\) 个节点的树中有且只有 \(N-1\) 条边,那么矩阵中的点的个数 \(-\) 矩阵中相邻的 \(1\) 所形成的边的个数 \(=\) 矩阵中树的个数,至于计算部分,二维前缀和搞一下就好了,可以做到 \(O(1)\) 查询.

代码

#include<bits/stdc++.h>
#define REP(i,first,last) for(int i=first;i<=last;++i)
#define DOW(i,first,last) for(int i=first;i<=last;++i)
using namespace std;
const int maxN=2333;
int N,M,T;
int arr[maxN][maxN];
int sum[maxN][maxN];
//对于竖着的边和横着的边需要不同处理
int suml[maxN][maxN];
int sumr[maxN][maxN];
int main()
{
scanf("%d%d%d",&N,&M,&T);
char ch;
REP(i,1,N)
{
REP(j,1,M)
{
cin>>ch;
arr[i][j]=ch-'0';
sum[i][j]=arr[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];//二维前缀,记录1出现的次数
if(arr[i][j])
{
if(arr[i-1][j])//如果有竖着的边
{
suml[i][j]++;
}
if(arr[i][j-1])//如果有横着的边
{
sumr[i][j]++;
}
}
//处理二维前缀
suml[i][j]+=suml[i-1][j]+suml[i][j-1]-suml[i-1][j-1];
sumr[i][j]+=sumr[i-1][j]+sumr[i][j-1]-sumr[i-1][j-1];
}
}
int fx,fy,lx,ly,answer;
REP(i,1,T)
{
scanf("%d%d%d%d",&fx,&fy,&lx,&ly);
//按照公式计算
answer=sum[lx][ly]-sum[lx][fy-1]-sum[fx-1][ly]+sum[fx-1][fy-1];
//竖着的的边的数量与横着的边的数量计算方式略有不同,如果不能理解可以画一张图来帮助理解
answer-=suml[lx][ly]+suml[fx][fy-1]-suml[lx][fy-1]-suml[fx][ly];
answer-=sumr[lx][ly]+sumr[fx-1][fy]-sumr[lx][fy]-sumr[fx-1][ly];
printf("%d\n",answer);
}
return 0;
}

「AT2381 [AGC015C] Nuske vs Phantom Thnook」的更多相关文章

  1. [agc015c]nuske vs phantom thnook

    题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...

  2. AtCoder:C - Nuske vs Phantom Thnook

    C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...

  3. Nuske vs Phantom Thnook

    Nuske vs Phantom Thnook Time limit : 4sec / Memory limit : 256MB Score : 700 points Problem Statemen ...

  4. [NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook

    题目链接 评测姬好快啊(港记号?)暴力40pts变成60pts 因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林 不难 ...

  5. AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)

    题目链接 闻本题有格子,且何谓格子也 \(Description\) 给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一. \(Q\)次询问.每次询问一个 ...

  6. AGC015 C Nuske vs Phantom Thnook(前缀和)

    题意 题目链接 给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点. $Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量 保证任意联通块内的任意蓝点之间均只有一条路径可达 S ...

  7. AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook

    题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...

  8. Atcoder C - Nuske vs Phantom Thnook(递推+思维)

    题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c 题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数 ...

  9. C - Nuske vs Phantom Thnook

    题意:n*m矩阵,n,m<=2e3,矩阵中的1能走到相邻4个1上,0代表障碍,若两个1联通 则只有一条路径 q个询问,q<=2e5,每次询问一个子矩阵中有多少个连通分量? 同一个连通分量中 ...

随机推荐

  1. 使用表单对象时,报错 form is undefine

    先看例子 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <ti ...

  2. idea中运行ssm 或springboot项目时,project Structure的配置

    ctrl+alt+shift+s进入 project Structure 首先是project选项 Modules 标明source testsource 以及 resource 和 testreso ...

  3. Codeforces 131C . The World is a Theatre(打表组合数)

    题目链接:http://codeforces.com/contest/131/problem/C 大意就是有n个男孩,m个女孩,从男孩中选不少于4个男孩,女孩中选不少于1个女孩,组成人数为t的队伍,问 ...

  4. Mysql SQL CAST()函数

    (1).CAST()函数的参数是一个表达式,它包括用AS关键字分隔的源值和目标数据类型.以下例子用于将文本字符串'12'转换为整型: SELECT CAST('12' AS int) (2).返回值是 ...

  5. Java - 字符串操作

    字符串常用操作如下 public static void main(String[] args) { /** * 创建字符串 */ String s1="zifuchuan123" ...

  6. c++调用自己编写的静态库(通过eclipse)

    转:https://blog.csdn.net/hao5335156/article/details/80282829 参考:https://blog.csdn.net/u012707739/arti ...

  7. 《深入理解Java虚拟机》读书笔记八

    第九章 类加载及执行子系统的案例与实战 Q:如果有10个WEB应用程序都是用Spring来进行组织管理的话,可以把Spring放到Common或Shared目录下(Tomcat5.0)让这些程序共享. ...

  8. 吴裕雄 python 机器学习——数据预处理标准化MaxAbsScaler模型

    from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[ ...

  9. 前端之HTML基础篇

    HTML基础篇 目录                                                                               本章内容: 简介 1. ...

  10. 本地mongodb数据库导出到远程数据库中

    把本地Mongodb中的数据导入(批量插入)到服务器的数据库中 1.导出数据: mongoexport -d admin -c users -o outdatafile.dat 选项解释: -d 指明 ...