LCIS HDU - 3308 (线段树区间合并)
LCIS HDU - 3308
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
InputT in the first line, indicating the case number.
Each case starts with two integers n , m(0<n,m<=10 5).
The next line has n integers(0<=val<=10 5).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=10 5)
OR
Q A B(0<=A<=B< n).
OutputFor each Q, output the answer.Sample Input
1
10 10
7 7 3 3 5 9 9 8 1 8
Q 6 6
U 3 4
Q 0 1
Q 0 5
Q 4 7
Q 3 5
Q 0 2
Q 4 6
U 6 10
Q 0 9
Sample Output
1
1
4
2
3
1
2
5
个人思路:这道题应该算是线段树区间合并的板子题,关键就是明确区间合并时的逻辑关系就可以了
我因为忽略区间内的最长连续上升序列有可能由子区间的区间内连续上升序列得到而错了好几次
//线段树区间合并
//关键:明确相邻区间合并时候的逻辑关系
#include<bits/stdc++.h>
#define ios ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid + 1,r
#define P pair<int,int>
#define ull unsigned long long
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ;
const int inf = 0x3f3f3f3f; struct node
{
int l,r;
int left ,right ,mid;
int maxx;
}tree[maxn << ]; int n,m;
int arr[maxn]; void Pushup(int rt)
{
tree[rt].left = tree[rt << ].left;
tree[rt].right = tree[rt << |].right;
bool flag = arr[tree[rt << |].l] > arr[tree[rt << ].r]; if(tree[rt << |].right == tree[rt << |].r - tree[rt << |].l + && flag)
{
tree[rt].right += tree[rt << ].right;
}
// 合并以左端点为头的最长序列 if(tree[rt << ].left == tree[rt << ].r - tree[rt << ].l + && flag)
{
tree[rt].left += tree[rt << |].left;
}
// 合并以右端点为尾的最长序列 if(arr[tree[rt << |].l] > arr[tree[rt << ].r])
{
tree[rt].mid = tree[rt << ].right + tree[rt << |].left;
}
else
{
tree[rt].mid = max(tree[rt << ].right , tree[rt << |].left);
}
tree[rt].mid = max(tree[rt].mid , max(tree[rt << ].mid,tree[rt << |].mid));
// 获得区间内的最长序列:可能由子区间构成 也可能从子区间得到
tree[rt].maxx = max(tree[rt].mid, max(tree[rt].left , tree[rt].right));
} void build(int rt ,int l ,int r)
{
tree[rt].l = l , tree[rt].r = r;
if(l == r)
{
tree[rt].left = tree[rt].right = tree[rt].maxx = tree[rt].mid = ;
return;
}
int mid = l + r >> ;
build(lson);
build(rson);
Pushup(rt);
} void update(int rt ,int k ,int v)
{
if(tree[rt].l == k && tree[rt].r == k)
{
arr[k] = v;
tree[rt].left = tree[rt].right = tree[rt].maxx = tree[rt].mid = ;
return;
}
int mid = tree[rt].l + tree[rt].r >> ;
if(mid >= k)
{
update(rt << , k , v);
}
else
{
update(rt << | , k , v);
}
Pushup(rt);
} int query(int rt , int l ,int r)
{
if(tree[rt].l == l && tree[rt].r == r)
{
return tree[rt].maxx;
}
int mid = tree[rt].l + tree[rt].r >> ;
if(mid >= r)
{
return query(rt << , l , r);
}
else if(mid < l )
{
return query(rt << | , l , r);
}
else
{
int m = min(mid - l + , tree[rt << ].right) + min(r - mid , tree[rt << |].left);
int left = query(rt<< ,l ,mid);
int right = query(rt << | , mid + , r);
if(arr[tree[rt << ].r] < arr[tree[rt << |].l])
{
return max(m,max(left , right));
}
else
{
return max(left , right);
}
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
//mem(arr,0);
scanf("%d %d",&n,&m);
for(int i = ; i <= n ; ++ i)
{
scanf("%d",&arr[i]);
}
build(,,n);
while(m -- )
{
char judge;
int l,r;
scanf(" %c %d %d",&judge ,&l , &r);
if(judge == 'U')
{
update(,l + ,r);
}
else
{
printf("%d\n",query(,l + , r + ));
}
}
}
return ;
}
AC代码
一个从很久以前就开始做的梦
LCIS HDU - 3308 (线段树区间合并)的更多相关文章
- hdu 3308(线段树区间合并)
LCIS Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- hdu 3308 线段树 区间合并+单点更新+区间查询
LCIS Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HDU 3911 线段树区间合并、异或取反操作
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3911 线段树区间合并的题目,解释一下代码中声明数组的作用: m1是区间内连续1的最长长度,m0是区间内连续 ...
- HDU 3911 线段树区间合并
北京赛区快了,准备袭击数据结构和图论.倒计时 18天,线段树区间合并.维护一个最长连续.. 题意:给一个01串,以下有一些操作,问区间最长的连续的1的个数 思路:非常裸的线段树区间合并 #includ ...
- hdu 1806(线段树区间合并)
Frequent values Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- HDU 3308 LCIS (线段树区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 题目很好懂,就是单点更新,然后求区间的最长上升子序列. 线段树区间合并问题,注意合并的条件是a[ ...
- HDU 3308 (线段树区间合并)
http://acm.hdu.edu.cn/showproblem.php?pid=3308 题意: 两个操作 : 1 修改 单点 a 处的值. 2 求出 区间[a,b]内的最长上升子序列. 做法 ...
- hdu 3911 Black And White (线段树 区间合并)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3911 题意: 给你一段01序列,有两个操作: 1.区间异或,2.询问区间最长的连续的1得长度 思路: ...
- hdu-3308 LCIS (线段树区间合并)
LCIS Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- Hadoop数据压缩技术
一.Hadoop数据压缩及其优缺点 1.压缩技术的好处与坏处 好处: 减少存储磁盘空间 降低IO(网络的IO和磁盘的IO) 加快数据在磁盘和网络中的传输速度,从而提高系统的处理速度. 坏处: 由于使用 ...
- 《机学一》特征工程1 ——文本处理:sklearn抽取、jieba中文分词、TF和IDF抽取
零.机器学习整个实现过程: 一.机器学习数据组成 特征值: 目标值: 二.特征工程和文本特征提取 1.概要: 1.特征工程是什么 2.特征工程的意义:直接影响预测结果 3.scikit-learn库 ...
- UVA - 1600 Patrol Robot (巡逻机器人)(bfs)
题意:从(1,1)走到(m,n),最多能连续穿越k个障碍,求最短路. 分析:obstacle队列记录当前点所穿越的障碍数,如果小于k可继续穿越障碍,否则不能,bfs即可. #pragma commen ...
- UVA - 816 Abbott's Revenge(bfs)
题意:迷宫从起点走到终点,进入某点的朝向不同,可以出去的方向也不同,输出最短路. 分析:因为朝向决定接下来在该点可以往哪里走,所以每个点需要有三个信息:x,y,d(坐标和进入该点的朝向),所以将起点的 ...
- C++ Winsock
由于兼容的问题更新下winsock,有较好的移植性:客户端是非阻塞的,服务器是阻塞的! Win32控制台: 数据收发: 服务器向客户端发送一个txt文本内容和一个结构体数据: 服务器代码: #incl ...
- web.xml的配置过程中也需要注意顺序问题
配置WEB.XML的配置文件过程中发现: 直接红叉,鼠标放在红叉出信息如下: cvc-complex-type.2.4.a: Invalid content was found starting wi ...
- 中文文本分类之CharCNN
文本分类是自然语言处理中一个非常经典的任务,可用的模型非常多,相关的开源代码也非常多了.这篇博客用一个CNN模型,对新闻文本进行分类. 全部代码有4个模块:1.数据处理模块(命名为:cnews_loa ...
- 九十七、SAP中ALV事件之十,通过REUSE_ALV_COMMENTARY_WRITE函数来显示ALV的标题
一.SE37查看REUSE_ALV_COMMENTARY_WRITE函数 二.查看一下导入 三.我们点击SLIS_T_LISTHEADER,来看一下类型 四.我们再看一下,这个info是60长度的字符 ...
- win10,64位操作系统安装mysql-8.0.16经验总结(图文详细,保证一次安装成功)
文章目录 1.mysql下载 2.解压及配置文件 3.启动MySQL数据库 4.登录 MySQL 5.配置系统环境变量 6.mysql-8.0.16修改初始密码 机器配置: win10,64位: my ...
- Elasticsearch 过滤
章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...