逻辑回归损失函数:

from sklearn.datasets import load_iris,make_classification
from sklearn.model_selection import train_test_split
import tensorflow as tf
import numpy as np X,Y = make_classification(n_samples=1000,n_features=5,n_classes=2)
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3) def initialize_with_zeros(shape):
"""
创建一个形状为 (shape, 1) 的w参数和b=0.
return:w, b
"""
w = np.zeros((shape, 1))
b = 0
return w, b def basic_sigmoid(x):
"""
计算sigmoid函数
""" s = 1 / (1 + np.exp(-x)) return s def propagate(w, b, X, Y):
"""
参数:w,b,X,Y:网络参数和数据
Return:
损失cost、参数W的梯度dw、参数b的梯度db
"""
m = X.shape[1] # w (n,1), x (n, m)
A = basic_sigmoid(np.dot(w.T, X) + b)
# 计算损失
cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
dz = A - Y
dw = 1 / m * np.dot(X, dz.T)
db = 1 / m * np.sum(dz)
cost = np.squeeze(cost) # 从数组的形状中删除单维条目,即把shape中为1的维度去掉
grads = {"dw": dw,
"db": db} return grads, cost def optimize(w, b, X, Y, num_iterations, learning_rate):
"""
参数:
w:权重,b:偏置,X特征,Y目标值,num_iterations总迭代次数,learning_rate学习率
Returns:
params:更新后的参数字典
grads:梯度
costs:损失结果
""" costs = [] for i in range(num_iterations): # 梯度更新计算函数
grads, cost = propagate(w, b, X, Y) # 取出两个部分参数的梯度
dw = grads['dw']
db = grads['db'] # 按照梯度下降公式去计算
w = w - learning_rate * dw
b = b - learning_rate * db if i % 100 == 0:
costs.append(cost)
if i % 100 == 0:
print("损失结果 %i: %f" %(i, cost))
print(b) params = {"w": w,
"b": b} grads = {"dw": dw,
"db": db} return params, grads, costs def predict(w, b, X):
'''
利用训练好的参数预测
return:预测结果
''' m = X.shape[1]
y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1) # 计算结果
A = basic_sigmoid(np.dot(w.T, X) + b) for i in range(A.shape[1]): if A[0, i] <= 0.5:
y_prediction[0, i] = 0
else:
y_prediction[0, i] = 1 return y_prediction def model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001):
"""
""" # 修改数据形状
x_train = x_train.reshape(-1, x_train.shape[0])
x_test = x_test.reshape(-1, x_test.shape[0])
y_train = y_train.reshape(1, y_train.shape[0])
y_test = y_test.reshape(1, y_test.shape[0])
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) # 1、初始化参数
w, b = initialize_with_zeros(x_train.shape[0]) # 2、梯度下降
# params:更新后的网络参数
# grads:最后一次梯度(下降损失)
# costs:每次更新的损失列表
params, grads, costs = optimize(w, b, x_train, y_train, num_iterations, learning_rate) # 获取训练的参数
# 预测结果
w = params['w']
b = params['b']
y_prediction_train = predict(w, b, x_train)
y_prediction_test = predict(w, b, x_test) # 打印准确率
print("训练集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_train - y_train)) * 100))
print("测试集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100)) return None if __name__ == '__main__':
model(x_train, y_train, x_test, y_test, num_iterations=500, learning_rate=0.01)

  

numpy+sklearn 手动实现逻辑回归【Python】的更多相关文章

  1. python sklearn库实现逻辑回归的实例代码

    Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Red ...

  2. 机器学习作业(二)逻辑回归——Python(numpy)实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np imp ...

  3. 机器学习算法整理(二)梯度下降求解逻辑回归 python实现

    逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...

  4. sklearn实现多分类逻辑回归

    sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...

  5. sklearn调用逻辑回归算法

    1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...

  6. 【笔记】逻辑回归中使用多项式(sklearn)

    在逻辑回归中使用多项式特征以及在sklearn中使用逻辑回归并添加多项式 在逻辑回归中使用多项式特征 在上面提到的直线划分中,很明显有个问题,当样本并没有很好地遵循直线划分(非线性分布)的时候,其预测 ...

  7. 逻辑回归代码demo

    程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...

  8. python——sklearn完整例子整理示范(有监督,逻辑回归范例)(原创)

    sklearn使用方法,包括从制作数据集,拆分数据集,调用模型,保存加载模型,分析结果,可视化结果 1 import pandas as pd 2 import numpy as np 3 from ...

  9. 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

随机推荐

  1. 分布式配置中心Apollo

    1,什么是分布式配置中心 项目中配置文件比较繁杂,而且不同环境的不同配置修改相对频繁,每次发布都需要对应修改配置,如果配置出现错误,需要重新打包发布,时间成本较高,因此需要做统一的分布式注册中心,能做 ...

  2. CDN 内容分发

    1,传统架构访问服务器资源: www.aiyuesheng.com/page/logo.png 这是部署在服务器上的一张图片,因为服务器部署在上海,所以在上海或周边的人访问要稍微快一点,但是,若是云南 ...

  3. A. Remainder Codeforces Round #560 (Div. 3)

    A. Remainder Codeforces Round #560 (Div. 3) You are given a huge decimal number consisting of nn dig ...

  4. async和await是如何实现异步编程?

    目录 异步编程样例 样例解析 浅谈Promise如何实现异步执行 参考 1.异步编程样例 样例: // 等待执行函数 function sleep(timeout) { return new Prom ...

  5. java对象clone

    java克隆 为什么需要克隆 我们在很多时候需要使用一个对象去记录另外一个对象的当前状态,对象中可能会有很多属性,如果我们一个一个去设置,不仅不方便,而且效率很低,我们看一个初学者可能遇到的问题 cl ...

  6. js 中对于this 的理解的 经典案例

    function Foo(){ getName = function(){console.log(1);}; return this; }Foo.getName = function(){consol ...

  7. 【tensorflow2.0】数据管道dataset

    如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高. 但如果需要训练的数据很大,例如超过10G,无法一次载入内存,那么通常需要在训练的过程中分批逐渐读入. ...

  8. 数据库学习 day2 检索数据

    上一节我们介绍了什么是数据库,以及一些基本的数据库术语 这一课介绍使用SELECT语句从表中检索一个或多个数据列. 关键字(Keyword) 作为SQL组成部分的保留字.关键字不能用作表和列的名字(类 ...

  9. python通过pymysql实现数据库的增删改查

    今天实现了python对于数据库的增删改查工作: 具体的每一步的数据库的增删盖茶自己都实验过了. 掌握了基本的数据库操作语言.然后就是对于tuple()的认识. 以及对于查询语句中的:fetchone ...

  10. MySQL数据库三

    MySQL数据库三 多表查询: 有条件的内连接 将两张表根据相同的id连接起来 select * from info join details on info.id = details.id sele ...