numpy+sklearn 手动实现逻辑回归【Python】

逻辑回归损失函数:

from sklearn.datasets import load_iris,make_classification
from sklearn.model_selection import train_test_split
import tensorflow as tf
import numpy as np X,Y = make_classification(n_samples=1000,n_features=5,n_classes=2)
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3) def initialize_with_zeros(shape):
"""
创建一个形状为 (shape, 1) 的w参数和b=0.
return:w, b
"""
w = np.zeros((shape, 1))
b = 0
return w, b def basic_sigmoid(x):
"""
计算sigmoid函数
""" s = 1 / (1 + np.exp(-x)) return s def propagate(w, b, X, Y):
"""
参数:w,b,X,Y:网络参数和数据
Return:
损失cost、参数W的梯度dw、参数b的梯度db
"""
m = X.shape[1] # w (n,1), x (n, m)
A = basic_sigmoid(np.dot(w.T, X) + b)
# 计算损失
cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
dz = A - Y
dw = 1 / m * np.dot(X, dz.T)
db = 1 / m * np.sum(dz)
cost = np.squeeze(cost) # 从数组的形状中删除单维条目,即把shape中为1的维度去掉
grads = {"dw": dw,
"db": db} return grads, cost def optimize(w, b, X, Y, num_iterations, learning_rate):
"""
参数:
w:权重,b:偏置,X特征,Y目标值,num_iterations总迭代次数,learning_rate学习率
Returns:
params:更新后的参数字典
grads:梯度
costs:损失结果
""" costs = [] for i in range(num_iterations): # 梯度更新计算函数
grads, cost = propagate(w, b, X, Y) # 取出两个部分参数的梯度
dw = grads['dw']
db = grads['db'] # 按照梯度下降公式去计算
w = w - learning_rate * dw
b = b - learning_rate * db if i % 100 == 0:
costs.append(cost)
if i % 100 == 0:
print("损失结果 %i: %f" %(i, cost))
print(b) params = {"w": w,
"b": b} grads = {"dw": dw,
"db": db} return params, grads, costs def predict(w, b, X):
'''
利用训练好的参数预测
return:预测结果
''' m = X.shape[1]
y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1) # 计算结果
A = basic_sigmoid(np.dot(w.T, X) + b) for i in range(A.shape[1]): if A[0, i] <= 0.5:
y_prediction[0, i] = 0
else:
y_prediction[0, i] = 1 return y_prediction def model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001):
"""
""" # 修改数据形状
x_train = x_train.reshape(-1, x_train.shape[0])
x_test = x_test.reshape(-1, x_test.shape[0])
y_train = y_train.reshape(1, y_train.shape[0])
y_test = y_test.reshape(1, y_test.shape[0])
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) # 1、初始化参数
w, b = initialize_with_zeros(x_train.shape[0]) # 2、梯度下降
# params:更新后的网络参数
# grads:最后一次梯度(下降损失)
# costs:每次更新的损失列表
params, grads, costs = optimize(w, b, x_train, y_train, num_iterations, learning_rate) # 获取训练的参数
# 预测结果
w = params['w']
b = params['b']
y_prediction_train = predict(w, b, x_train)
y_prediction_test = predict(w, b, x_test) # 打印准确率
print("训练集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_train - y_train)) * 100))
print("测试集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100)) return None if __name__ == '__main__':
model(x_train, y_train, x_test, y_test, num_iterations=500, learning_rate=0.01)
numpy+sklearn 手动实现逻辑回归【Python】的更多相关文章
- python sklearn库实现逻辑回归的实例代码
Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Red ...
- 机器学习作业(二)逻辑回归——Python(numpy)实现
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np imp ...
- 机器学习算法整理(二)梯度下降求解逻辑回归 python实现
逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...
- sklearn实现多分类逻辑回归
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...
- sklearn调用逻辑回归算法
1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...
- 【笔记】逻辑回归中使用多项式(sklearn)
在逻辑回归中使用多项式特征以及在sklearn中使用逻辑回归并添加多项式 在逻辑回归中使用多项式特征 在上面提到的直线划分中,很明显有个问题,当样本并没有很好地遵循直线划分(非线性分布)的时候,其预测 ...
- 逻辑回归代码demo
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...
- python——sklearn完整例子整理示范(有监督,逻辑回归范例)(原创)
sklearn使用方法,包括从制作数据集,拆分数据集,调用模型,保存加载模型,分析结果,可视化结果 1 import pandas as pd 2 import numpy as np 3 from ...
- 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
随机推荐
- Vue路由配置history模式
我的博客: https://github.com/Daotin/fe-notes/issues vue需要node.js吗? 你可以用 script 标签的形式引入vue.min.js 这样的,不需要 ...
- [noip模拟赛]虫洞holes<SPFA>
虫洞(holes.cpp/c/pas) [题目描述] N个虫洞,M条单向跃迁路径.从一个虫洞沿跃迁路径到另一个虫洞需要消耗一定量的燃料和1单位时间.虫洞有白洞和黑洞之分.设一条跃迁路径两端的虫洞质量差 ...
- 从春节送祝福谈谈 IO 模型(二)
上期结合程序员小猿用温奶器给孩子热奶的故事,把面试中常聊的“同步.异步与阻塞.非阻塞有啥区别”简单进行普及. 不过,恰逢春节即将到来,应个景,不妨就通过实现新春送祝福的需求,深入了解一下 Java I ...
- 为什么要学习Oracle技术?
为什么要学习Oracle技术? 众所周知,Oracle占据着企业数据库领域超过48.1%的市场份额,成为高端企业数据库软件的绝对领导者.随着时间的推移,企业数据库的规模不断扩大,富有经验的资深Orac ...
- Ubuntu 修改$PS1 自定义命令提示符
文章更新于:2020-03-25 文章目录 一.自定义命令提示符 1.可修改的是那部分? 2.修改 $PS1 变量 3.$PS1 变量格式 4.如何修改背景颜色 5.修改字体 二.Enjoy! 一.自 ...
- spring07
关于spring的泛型依赖注入主要是继承等方面的知识 具体实现的简单的代码如下: package bao1; public class BaseRepository <T>{ } pack ...
- C/C++内存详解
众所周知,堆和栈是数据结构中的两种数据结构类型,堆是一种具有优先顺序的完全二叉树(或者说是一种优先队列,因为它在一定的优先顺序下满足队列先进先出的特点),排队打饭就是它的典型实例,栈是一种后进先出的数 ...
- Linux 磁盘管理篇(一 磁盘分区)
显示系统所有分区内容 fdisk 分区工具 parted fdisk: 执行完后按下 q 是退出不保存操作的意思 执行完后按下 w 是执行操作的意思 ...
- 程序员的 Ubuntu 19.10 配置与优化指南
原文地址:程序员的 Ubuntu 19.10 配置与优化指南 0x00 环境 CPU: Intel Core i9-9900k GPU: GeForce RTX 2070 SUPER RAM: DDR ...
- POj3017 dp+单调队列优化
传送门 解题思路: 大力推公式:dp[i]=min(dp[k]+max(k+1,i)){k>=0&&k<i},max(j,i)记为max(a[h]){h>k& ...