numpy+sklearn 手动实现逻辑回归【Python】
逻辑回归损失函数:
from sklearn.datasets import load_iris,make_classification
from sklearn.model_selection import train_test_split
import tensorflow as tf
import numpy as np X,Y = make_classification(n_samples=1000,n_features=5,n_classes=2)
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3) def initialize_with_zeros(shape):
"""
创建一个形状为 (shape, 1) 的w参数和b=0.
return:w, b
"""
w = np.zeros((shape, 1))
b = 0
return w, b def basic_sigmoid(x):
"""
计算sigmoid函数
""" s = 1 / (1 + np.exp(-x)) return s def propagate(w, b, X, Y):
"""
参数:w,b,X,Y:网络参数和数据
Return:
损失cost、参数W的梯度dw、参数b的梯度db
"""
m = X.shape[1] # w (n,1), x (n, m)
A = basic_sigmoid(np.dot(w.T, X) + b)
# 计算损失
cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
dz = A - Y
dw = 1 / m * np.dot(X, dz.T)
db = 1 / m * np.sum(dz)
cost = np.squeeze(cost) # 从数组的形状中删除单维条目,即把shape中为1的维度去掉
grads = {"dw": dw,
"db": db} return grads, cost def optimize(w, b, X, Y, num_iterations, learning_rate):
"""
参数:
w:权重,b:偏置,X特征,Y目标值,num_iterations总迭代次数,learning_rate学习率
Returns:
params:更新后的参数字典
grads:梯度
costs:损失结果
""" costs = [] for i in range(num_iterations): # 梯度更新计算函数
grads, cost = propagate(w, b, X, Y) # 取出两个部分参数的梯度
dw = grads['dw']
db = grads['db'] # 按照梯度下降公式去计算
w = w - learning_rate * dw
b = b - learning_rate * db if i % 100 == 0:
costs.append(cost)
if i % 100 == 0:
print("损失结果 %i: %f" %(i, cost))
print(b) params = {"w": w,
"b": b} grads = {"dw": dw,
"db": db} return params, grads, costs def predict(w, b, X):
'''
利用训练好的参数预测
return:预测结果
''' m = X.shape[1]
y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1) # 计算结果
A = basic_sigmoid(np.dot(w.T, X) + b) for i in range(A.shape[1]): if A[0, i] <= 0.5:
y_prediction[0, i] = 0
else:
y_prediction[0, i] = 1 return y_prediction def model(x_train, y_train, x_test, y_test, num_iterations=2000, learning_rate=0.0001):
"""
""" # 修改数据形状
x_train = x_train.reshape(-1, x_train.shape[0])
x_test = x_test.reshape(-1, x_test.shape[0])
y_train = y_train.reshape(1, y_train.shape[0])
y_test = y_test.reshape(1, y_test.shape[0])
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) # 1、初始化参数
w, b = initialize_with_zeros(x_train.shape[0]) # 2、梯度下降
# params:更新后的网络参数
# grads:最后一次梯度(下降损失)
# costs:每次更新的损失列表
params, grads, costs = optimize(w, b, x_train, y_train, num_iterations, learning_rate) # 获取训练的参数
# 预测结果
w = params['w']
b = params['b']
y_prediction_train = predict(w, b, x_train)
y_prediction_test = predict(w, b, x_test) # 打印准确率
print("训练集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_train - y_train)) * 100))
print("测试集准确率: {} ".format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100)) return None if __name__ == '__main__':
model(x_train, y_train, x_test, y_test, num_iterations=500, learning_rate=0.01)
numpy+sklearn 手动实现逻辑回归【Python】的更多相关文章
- python sklearn库实现逻辑回归的实例代码
Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Red ...
- 机器学习作业(二)逻辑回归——Python(numpy)实现
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np imp ...
- 机器学习算法整理(二)梯度下降求解逻辑回归 python实现
逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...
- sklearn实现多分类逻辑回归
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...
- sklearn调用逻辑回归算法
1.逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决. 2.决策边界是指不同分类结果之间的边界 ...
- 【笔记】逻辑回归中使用多项式(sklearn)
在逻辑回归中使用多项式特征以及在sklearn中使用逻辑回归并添加多项式 在逻辑回归中使用多项式特征 在上面提到的直线划分中,很明显有个问题,当样本并没有很好地遵循直线划分(非线性分布)的时候,其预测 ...
- 逻辑回归代码demo
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...
- python——sklearn完整例子整理示范(有监督,逻辑回归范例)(原创)
sklearn使用方法,包括从制作数据集,拆分数据集,调用模型,保存加载模型,分析结果,可视化结果 1 import pandas as pd 2 import numpy as np 3 from ...
- 逻辑回归--美国挑战者号飞船事故_同盾分数与多头借贷Python建模实战
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
随机推荐
- UVA - 11426 欧拉函数(欧拉函数表)
题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...
- 9.Maven的生命周期
Clean Lifecycle: 在进行真正的构建之前进行一些清理工作. Default Lifecycle :构建的核心部分,编译,测试,打包,部署等等. Site Lifecycle : 生成项目 ...
- 如何优雅的将文件转换为字符串(环绕执行模式&行为参数化&函数式接口|Lambda表达式)
首先我们讲几个概念: 环绕执行模式: 简单的讲,就是对于OI,JDBC等类似资源,在用完之后需要关闭的,资源处理时常见的一个模式是打开一个资源,做一些处理,然后关闭资源,这个设置和清理阶段类似,并且会 ...
- fiddler设置重定向
fiddler支持将指定模式的url映射到另一个指定的url,即可用于拦截某一请求,并重定向到本地的资源或其他服务器地址 fiddler常用于: 解析请求:如:解析http请求状态,请求头,请求正文, ...
- yii2框架学习笔记
1.去掉yii2模版默认的头部和脚部的两种方法: (1) 第一种 $this->layout = false; $this->render('index'); (2) 第二种(partia ...
- 通过简单的ajax验证是否存在已有的用户名
首先来说说我对ajax的理解:简单地来说就是在不重新刷新页面的情况下,实现数据的调用获得更新. 我在这里介绍的是要过jquery封装好的ajax,大家可以去了解一下使用原生的XMLHttpReques ...
- System.out.println()的真实含义
每一个人的Java学习之路上恐怕都是用以下代码开始的吧? public class Test { public static void main(String[] args) { System.out ...
- Python Requests-学习笔记(2)
你也许经常想为URL的查询字符串(query string)传递某种数据.如果你是手工构建URL, 那么数据会以键/值 对的形式置于URL中,跟在一个问号的后面.例如,httpbin.org/get? ...
- scala_spark实践1
/** * scala模型的main(args:Array[String])是业务执行入口 * org.apache.spark.{SparkConf, SparkContext} * val spa ...
- CountDownLatch 计算器(具有回调功能)
final CountDownLatch cdl = new CountDownLatch(1); new Thread(new Runnable() { @Override public void ...