插头DP基础题的样子。。。输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物。输出哈密顿回路(可以多回路)方案数。。。

看了个ppt,画了下图。。。感觉还是挺有效的。。。

参考http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710343.html

以及推荐cd琦的论文ppthttp://wenku.baidu.com/view/4fe4ac659b6648d7c1c74633.html

向中学生学习~~

感觉以后可能还会要看这篇日志。所以特意加了较多的注释。。。观客可以看注释=。=推荐画示意图。。。。

复杂度O(n*m*2^(m+1))

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <set>
using namespace std; #define ll long long
#define inf 0x3f3f3f3f
#define eps 1e-8 int a[][];
ll dp[][][<<];
int main(){
int t,ca=;
scanf("%d",&t);
while(t--){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)for(int j=;j<=m;++j)scanf("%d",&a[i][j]);
memset(dp,,sizeof(dp));
dp[][][]=;
int ma=(<<(m+));
for(int i=;i<=n;++i){
for(int j=;j<=m;++j){
for(int k=;k<ma;++k){
int d=<<(j-),r=<<j;
if(a[i][j]){// 该位置无障碍
if( ( (k&d)&&(k&r) ) || ( (~k&d)&&(~k&r)) )// 右插下插同时有或同时无,必须翻转
dp[i][j][k]=dp[i][j-][k^d^r];
else // 右插下插只有一个,可翻转可不翻转
dp[i][j][k]=dp[i][j-][k]+dp[i][j-][k^d^r];
}
else {// 该位置有障碍
if((k&d)==&&(k&r)==)// 没有右插没有下插,则方案数跟随
dp[i][j][k]=dp[i][j-][k];
}
}
}
if(i+<=)
for(int k=;k<(<<m);++k)// 换行去掉上一行的右插,下一行的开头没有进来的左插,请画图
dp[i+][][k<<]=dp[i][m][k];
}
printf("Case %d: There are %I64d ways to eat the trees.\n",++ca,dp[n][m][]);
}
return ;
}

做了上面那个入门级别的插头DP。。。做了个还是入门级别的。。。。

输入N,M<=12,以及N*M的01矩阵,'*'('.')表示有(无)障碍物。输出哈密顿单回路方案数。。。

这一题需要用到括号匹配,最小表示法(上面那题可以不用,我的代码就是没有用到的)。。。

这一题参考了别人的代码,尝试了2种表示方法,一种是直接存括号对应的连通分量标号,一种是只存括号的类型。。。

我的第一种方法300+ms,第二种100+ms。。。感觉还是有点区别的。。。因为存连通分量标号需要用到3位(连通分量标号最大值为MAXM/2),而括号类型只需要2位

。。

而这题跟上一题的区别,就是,单哈密顿回路的括号匹配,如果左插是'(',下插是')',那只能在最后一个非障碍物的位置连接。。。。

具体看代码吧。。。还是建议画下示意图。。。

还有一点就是,由于用到HASH,所以HASH太大太小都可能会TLE

300+ms的版本(其实就是那个链接里的。。。。):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <set>
using namespace std; #define ll long long
#define inf 0x3f3f3f3f
#define eps 1e-8 #define maxd 15
#define HASH 100007
#define STATE 1000010 int n,m;
int maze[maxd][maxd],code[maxd];
int ch[maxd];//最小表示法使用
int ex,ey;//最后一个非障碍格子的坐标
struct HASHMAP{
int head[HASH],nxt[STATE],sz;
ll state[STATE];
ll f[STATE];
void clear(){sz=;memset(head,-,sizeof(head));}
void push(ll st,ll ans){
int h=st%HASH;
for(int i=head[h];i!=-;i=nxt[i])
if(state[i]==st){
f[i]+=ans;
return;
}
state[sz]=st;
f[sz]=ans;
nxt[sz]=head[h];
head[h]=sz++;
}
}hm[];
void decode(int *code,int m,ll st){
for(int i=m;i>=;i--)code[i]=st&,st>>=;
}
ll encode(int *code,int m){//最小表示法
int cnt=;
memset(ch,-,sizeof(ch));
ch[]=;
ll st=;
for(int i=;i<=m;i++){
if(ch[code[i]]==-)ch[code[i]]=cnt++;
code[i]=ch[code[i]];
st<<=;
st|=code[i];
}
return st;
}
void shift(int *code,int m){
for(int i=m;i>;i--)code[i]=code[i-];
code[]=;
}
void dpblank(int i,int j,int cur){
for(int k=;k<hm[cur].sz;k++){
decode(code,m,hm[cur].state[k]);
int left=code[j-],up=code[j];
if(left&&up){
if(left==up){//只能出现在最后一个非障碍格子
if(i==ex&&j==ey){
code[j-]=code[j]=;
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
else{//不在同一个连通分量则合并
code[j-]=code[j]=;
for(int t=;t<=m;t++)
if(code[t]==up)code[t]=left;
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
else if(left || up){
int t = left + up;
if(maze[i][j+]){
code[j-]=;
code[j]=t;
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
if(maze[i+][j]){
code[j-]=t;
code[j]=;
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
else{//无插头,则构造新的连通块
if(maze[i][j+]&&maze[i+][j]){
code[j-]=code[j]=;
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
}
}
void dpblock(int i,int j,int cur){
for(int k=;k<hm[cur].sz;k++){
decode(code,m,hm[cur].state[k]);
code[j-]=code[j]=;
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
char str[maxd];
void init(){
memset(maze,,sizeof(maze));
ex=;
for(int i=;i<=n;i++){
scanf("%s",str+);
for(int j=;j<=m;j++){
if(str[j]=='.'){// 无障碍
ex=i,ey=j;
maze[i][j]=;
}
}
}
}
void solve(){
int cur=;
ll ans=;
hm[].clear();
hm[].push(,);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
hm[cur^].clear();
if(maze[i][j])dpblank(i,j,cur);
else dpblock(i,j,cur);
cur^=;
}
for(int i=;i<hm[cur].sz;i++)
ans+=hm[cur].f[i];
printf("%I64d\n",ans);
}
int main(){
while(~scanf("%d%d",&n,&m)){
init();
if(ex==)puts("");// 没有空的格子
else solve();
}
return ;
}

100+ms的版本(改编自那个链接里的。。。。):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <set>
using namespace std; #define ll long long
#define inf 0x3f3f3f3f
#define eps 1e-8 #define maxd 15
#define HASH 100007
#define STATE 1000010 int n,m;
int maze[maxd][maxd],code[maxd];
int ch[maxd];//最小表示法使用
int ex,ey;//最后一个非障碍格子的坐标
struct HASHMAP{
int head[HASH],nxt[STATE],sz;
ll state[STATE];
ll f[STATE];
void clear(){sz=;memset(head,-,sizeof(head));}
void push(ll st,ll ans){
int h=st%HASH;
for(int i=head[h];i!=-;i=nxt[i])
if(state[i]==st){
f[i]+=ans;
return;
}
state[sz]=st;
f[sz]=ans;
nxt[sz]=head[h];
head[h]=sz++;
}
}hm[];
void decode(int *code,int m,ll st){
for(int i=;i<=m;++i)code[i]=st&,st>>=;
}
ll encode(int *code,int m){//最小表示法
ll st=;
for(int i=m;i>=;--i)
st=st<<|code[i];
return st;
}
void shift(int *code,int m){
for(int i=m;i>;i--)code[i]=code[i-];
code[]=;
}
void dpblank(int i,int j,int cur){
for(int k=;k<hm[cur].sz;k++){
decode(code,m,hm[cur].state[k]);
int left = code[j-],up = code[j];
if(left&&up){
if(left== && up==){// 只能出现在最后一个非障碍格子
if(i==ex&&j==ey){
code[j-]=code[j]=;
ll tmp = encode(code,m);
if(j==m)tmp<<=;
hm[cur^].push(tmp,hm[cur].f[k]);
}
}
else{//不在同一个连通分量则合并
if(left== && up==){// ...(...(...))... ==> ...(...)...##...
for(int jj=j-,cnt=;jj>=;--jj){
if(code[jj]==)++cnt;
else if(code[jj]==)--cnt;
if(cnt==){code[jj]=-code[jj];break;}
}
code[j-]=code[j]=;
}
else if(left== && up==){// ...((...)...)... ==> ...##...(...)...
for(int jj=j,cnt=;jj<=m;++jj){
if(code[jj]==)++cnt;
else if(code[jj]==)--cnt;
if(cnt==){code[jj]=-code[jj];break;}
}
code[j-]=code[j]=;
}
else if(left== && up==){// ...(...)(...)... ==> ...(...##...)...
code[j-]=code[j]=;
}
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
else if(left || up){
int t = left | up;
if(maze[i][j+]){
code[j-]=;
code[j]=t;
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
if(maze[i+][j]){
code[j-]=t;
code[j]=;
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
else{//无插头,则构造新的连通块
if(maze[i][j+]&&maze[i+][j]){
code[j-]=,code[j]=;
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
}
}
void dpblock(int i,int j,int cur){
for(int k=;k<hm[cur].sz;k++){
decode(code,m,hm[cur].state[k]);
code[j-]=code[j]=;
if(j==m)shift(code,m);
hm[cur^].push(encode(code,m),hm[cur].f[k]);
}
}
char str[maxd];
void init(){
memset(maze,,sizeof(maze));
ex=;
for(int i=;i<=n;i++){
scanf("%s",str+);
for(int j=;j<=m;j++){
if(str[j]=='.'){// 无障碍
ex=i,ey=j;
maze[i][j]=;
}
}
}
}
void solve(){
int cur=;
ll ans=;
hm[].clear();
hm[].push(,);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
hm[cur^].clear();
if(maze[i][j])dpblank(i,j,cur);
else dpblock(i,j,cur);
cur^=;
}
for(int i=;i<hm[cur].sz;i++)
ans+=hm[cur].f[i];
printf("%I64d\n",ans);
}
int main(){
while(~scanf("%d%d",&n,&m)){
init();
if(ex==)puts("");// 没有空的格子
else solve();
}
return ;
}

HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)的更多相关文章

  1. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  2. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  3. bzoj 1814 Ural 1519 Formula 1 插头DP

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 942  Solved: 356[Submit][Sta ...

  4. hdu 1693 Eat the Trees——插头DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1693 第一道插头 DP ! 直接用二进制数表示状态即可. #include<cstdio> # ...

  5. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  6. HDU - 1693 Eat the Trees(多回路插头DP)

    题目大意:要求你将全部非障碍格子都走一遍,形成回路(能够多回路),问有多少种方法 解题思路: 參考基于连通性状态压缩的动态规划问题 - 陈丹琦 下面为代码 #include<cstdio> ...

  7. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  8. HDU 1693 Eat the Trees (插头DP)

    题意:给一个n*m的矩阵,为1时代表空格子,为0时代表障碍格子,问如果不经过障碍格子,可以画一至多个圆的话,有多少种方案?(n<12,m<12) 思路: 这题不需要用到最小表示法以及括号表 ...

  9. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

随机推荐

  1. vim中添加molokai.vim 配色安装

    无意中发现知乎中讨论的话题: 你认为最好看的 Vim 配色方案(color scheme)是哪款? 网友回答 排在第一位的是:molokai 啊,最经典的配色 既然molokai这么经典,当然要用了. ...

  2. 大数据BI积累

    http://blog.csdn.net/wyzxg/article/category/535869 设计论文:http://www.doc88.com/p-3877368345851.html 自动 ...

  3. Bots(逆元,递推)

    H. Bots time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input out ...

  4. servlet之filter过滤器

    1.Servlet 过滤器有以下目的 在客户端的请求访问后端资源之前,拦截这些请求. 在服务器的响应发送回客户端之前,处理这些响应. 2.Filter接口 1.每一个过滤器都需直接或间接继承Filte ...

  5. mongodb安装 window

    安装MongoDB 1.按照操作系统下载http://www.mongodb.org/downloads. 2.在D盘新建MongoDB文件夹(此文件夹为自定义的数据库安装目录D:\MongoDB)把 ...

  6. 如何使用java自定义注解?demo

    1.Description.java package kzfy.bk.com; import java.lang.annotation.Documented; import java.lang.ann ...

  7. Web服务精讲–搭个 Web 服务器(二)

    导读 曾几何时,你所选择的 Python Web 框架会限制你所可选择的 Web 服务器,反之亦然.如果某个框架及服务器设计用来协同工作的,那么一切正常. 在第一部分中,我提出了一个问题:“如何在你刚 ...

  8. [转载]PO BO VO DTO POJO DAO概念及其作用

    原文链接:http://jeoff.blog.51cto.com/186264/88517/ POJO = pure old java object or plain ordinary java ob ...

  9. PyQt4自定义事件

    listview控件与updateText 相关联 self.listview.updateText.connect(self.viewlist)   updateText = QtCore.pyqt ...

  10. 中文的加密传输(python版)

    信息传输过程中,可能会被各种监听. 这里介绍一种简单的加密算法(可逆). 正向加密: 字符串 -> 字节(char->int转换) -> 异或每个字节某个KEY  ->字节(i ...