Note of Markov Chain Monte Carlo and Gibbs Sampling :  http://pan.baidu.com/s/1jHpWY1o

序:A major limitation towards more widespread implementation of Bayesian approaches is that obtaining thee posterior distribution often requires the integration of high-dimensional functions. Here the MCMC is used to solve this problem. There are two major method in the using of MCMC ---- Metropolis algorithm and Gibbs sampling.

  1. Monte Carlo Integration

问题:计算一个复杂积分

解决方案:把 分解成 ,要求是概率密度函数,得到 ,将函数积分转换为随机变量函数的期望进行计算。,这里的xi是服从概率分布密度为的随机变量x的取值。

应用在贝叶斯理论中,后验概率

  1. Introduction to Markov Chain

介绍了马尔科夫过程,马尔可夫链,状态空间,转移概率,转移矩阵,以及切普曼-柯尔莫哥洛夫方程,平稳分布等概念。这里提及了从离散的平稳分布向连续状态进行过渡: à

  1. The Metropolis-Hasting Algorithm

问题:从复杂的概率分布p(x)中采样。

解决方案:假如我们要从p(x)=f(x)/K中采样,但是K 并不已知且无法求取,则采取如下方法进行采样

a.设定初始值x0,要满足f(x0)>0;

b.利用现在的x值,从转移分布q(x1,x2)中采样一个候选参数x*,对这个转移分布的限制是q(x1,x2)=q(x2,x1);

c.计算 (这里用的是比值所以可以避开K 进行计算);

d.如果alpha大于1则接受候选 x*;如果alpha小于1,则以概率alpha接受候选x*;然后返回到步骤b.

4. The Gibbs Sampler

这种采样方法应用在多变量的分布当中,在采样时,我们每次只对一个变量进行采样将其他变量固定。也就是说每次都是对一个单变量的条件分布进行采样,而不去理会联合分布,这样对n个变量进行轮流采样,进行k轮之后得到一个长度为k 的Gibbs Sequence 用来表示联合分布的采样。文章中的Example 4里列出了一个二维的联合分布的采样过程,他的两个条件分布分别为二项分布和Beta分布,很好的诠释 了Gibbs采样的流程和优势。

另外,这里还比较了吉布斯采样和EM算法的联系与区别。

EM每次都包含两个步骤:a.在固定参数下对隐变量求期望;b.固定隐变量的取值,利用极大似然的方法对参数数进行估计。

吉布斯采样则将隐变量和参数看成同等地位进行随机采样,可以看成是对EM算法的随机模拟。(原文:The Gibbs sampler can be thought of as a stochastic analog to the EM approaches used to obtain likelihood functions when missing data are present .)

参考:《统计学习方法》;

《Pattern recognition and machine learning 》第十一章 .

MCMC&Gibbs sampling的更多相关文章

  1. MCMC,GIBBS SAMPLING简单摘要

    本文后面很多内容都是参考博客:http://www.cnblogs.com/xbinworld/p/4266146.html.本文主要用作学习交流备忘用. 1)简述: 随机模拟也可以叫做蒙特卡洛模拟, ...

  2. 随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

    本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...

  3. 机器学习方法(八):随机采样方法整理(MCMC、Gibbs Sampling等)

    转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比 ...

  4. 随机采样方法整理与讲解(Acceptance-Rejection、MCMC、Gibbs Sampling等)

    本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...

  5. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  6. 随机模拟MCMC和Gibbs Sampling

    随机模拟 统计模拟中有一个重要的问题就是给定一个概率分布 p(x),我们如何在计算机中生成它的样本.一般而言均匀分布 Uniform(0,1)的样本是相对容易生成的. 通过线性同余发生器可以生成伪随机 ...

  7. 【转载】MCMC和Gibbs Sampling算法

    转载随笔,原贴地址:MCMC和Gibbs Sampling算法 本文是整理网上的几篇博客和论文所得出来的,所有的原文连接都在文末. 在科学研究中,如何生成服从某个概率分布的样本是一个重要的问题.如果样 ...

  8. LDA-math-MCMC 和 Gibbs Sampling

    http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Mon ...

  9. 随机采样和随机模拟:吉布斯采样Gibbs Sampling

    http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. samp ...

随机推荐

  1. Ceph 之RGW Pub-Sub Module

    Overview Pub-Sub module 顾名思义是一个发布订阅相关的模块.Pub-Sub module 为对象存储的变更事件提供一种发布-订阅机制.而发布-订阅架构本身应用非常广泛,如公有云G ...

  2. salesforce零基础学习(九十五)lightning out

    随着salesforce对lightning的推进,越来越多的项目基于lightning开发,导致很多小伙伴可能都并不了解classic或者认为不需要用到classic直接就开始了lightning的 ...

  3. 2019 沈阳网络赛 Fish eating fruit

    这题看了三个月,终于过了,第一次看的时候没学树形DP,想用点分治但是不会 后来学了二次扫描,就有点想法了.... 这东西也真就玄学了吧... #include<iostream> #inc ...

  4. JDBC 详解笔记

    # JDBC ## 1:What? 通过Java代码来操作数据库的. 数据库的种类很多,导致不同的数据库的操作方式是不同. 通过JDBC的标准完成.通过java语言完成对于数据库的CRUD. ## 2 ...

  5. 洛谷$P2046\ [NOI2010]$海拔 网络流+对偶图

    正解:网络流+对偶图 解题报告: 传送门$QwQ$ $umm$之前省选前集训的时候叶佬考过?然而这和我依然不会做有什么关系呢$kk$ 昂这题首先要两个结论?第一个是说每个位置的海拔一定是0/1,还一个 ...

  6. $Poj1952\ $洛谷$1687\ Buy\ Low,Buy\ Lower$ 线性$DP+$方案计数

    Luogu Description 求一个长度为n的序列a的最长下降子序列的长度,以及这个长度的子序列种数,注意相同的几个子序列只能算作一个子序列. n<=5000,a[i]不超过long范围 ...

  7. jetbrains全家桶 你懂得

    这个是松哥说的引用一下: 昨天一直在忙,中午抽空瞅了一眼技术群,天呐,竟然都在切磋 IDEA 激活码的事情,瞬间明白可能 jetbrains 又在搞事情了. 我大概了解了下,这次出事的主要是 2019 ...

  8. iscsi,nfs

    存储概述 存储的目标 存储是根据不同的应用环境通过采取合理.安全.有效的方式将数据保存到某些介质上并能保证有效的访问. 一方面它是数据临时或长期驻留的物理媒介. 另一方面,它是保证数据完整安全存放的方 ...

  9. kmp算法初步理解

    123456789 abbdaxnds Next   01212 第三位看第二位b,第二位和第三位相同,都是b,所以第三位的next是第二位的next加1,即1+1=2 第四位看第三位b,第四位d与第 ...

  10. ODBC连接时报错不可识别的数据库格式

    报这个错误是因为Acess的版本不同. 2003版本的Acess的数据连接字符串: string dataBasePath = @"C:/Users/user/Documents/Test. ...