首先分解质因数,$A^B=p_1^{m_1B}p_2^{m_2B}...p_n^{m_nB}$

然后的话,它的所有因数的和就是$\prod{(1+p_i^1+p_i^2+...+p_i^n)}$

用一个等比数列求和公式,变成了$\prod{\frac{p_i^{m_iB+1}-1}{p_i-1}}$

但是要求逆元的话,它的模数很小,可能求不了

所以在算$p_i^{n+1}-1$的时候先模的是$mod*(p_i-1)$,然后直接除以$p_i-1$,一定能整除

最后再模一边mod就行了

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=1e4,P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} ll p[maxn];
ll n[maxn],a,b; inline ll fmul(ll x,ll y,ll p){
ll re=;
while(y){
if(y&) re=(re+x)%p;
x=(x+x)%p,y>>=;
}return re;
} inline ll fpow(ll x,ll m,ll p){
ll re=;
while(m){
if(m&) re=fmul(re,x,p);
x=fmul(x,x,p),m>>=;
}return re;
} int main(){
int i,j=,k;
a=rd(),b=rd();
for(i=;i*i<=a;i++){
if(a%i==) p[++j]=i;
while(a%i==) n[j]++,a/=i;
}if(a!=) p[++j]=a,n[j]=;
ll ans=;
for(i=;i<=j;i++){
ll x=fpow(p[i],n[i]*b+,(p[i]-)*P)+(p[i]-)*P-;
ans=ans*(x/(p[i]-)%P)%P;
}
printf("%d\n",(ans+P)%P);
return ;
}

poj1845 sumdiv (因数的和)的更多相关文章

  1. poj1845 Sumdiv

    poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...

  2. POJ1845 Sumdiv(求所有因数和+矩阵快速幂)

    题目问$A^B$的所有因数和. 根据唯一分解定理将A进行因式分解可得:A = p1^a1 * p2^a2 * p3^a3 * pn^an.A^B=p1^(a1*B)*p2^(a2*B)*...*pn^ ...

  3. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

  4. POJ1845 Sumdiv [数论,逆元]

    题目传送门 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26041   Accepted: 6430 Des ...

  5. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  6. POJ1845 sumdiv 数论

    正解:小学数学数论 解题报告: 传送门! 其实不难但我数学这个方面太菜了所以还是多写点儿博客趴QAQ 然后因为是英文的所以先翻译一下,,,? 大概就是说求AB的所有约数之和,对9901取膜 这个只需要 ...

  7. POJ1845 Sumdiv 数学?逆元?

    当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...

  8. 题解 poj1845 Sumdiv (数论) (分治)

    传送门 大意:求A^B的所有因子之和,并对其取模 9901再输出 (这题又调了半天,把n和项数弄混了QAQ) 根据算数基本定理:A=(p1^k1)*(p2^k2)*(p3^k3)*...*(pn^kn ...

  9. noip2017考前整理(未完)

    快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...

随机推荐

  1. mysql cpu 100% 满 优化方案

    解决MySQL CPU占用100%的经验总结 - karl_han的专栏 - CSDN博客 https://blog.csdn.net/karl_han/article/details/5630782 ...

  2. httpd sshd firewalld 服务后面的d的意思

    在操作系统中,一般系统的服务都是以后台进程的方式存在,而且都会常驻系统中,直到关机才结束.这类服务也称Daemon,在Linux系统中就包含许多的Daemon. 判断Daemon最简单的方法就是从名称 ...

  3. 6-1 Quantifiers

    1 Quantifiers are used to describe the number or amount of something. Certain quantifiers are used w ...

  4. 名称空间2.0path

    Django 1点几跟2点几的区别 2.0path 是什么路径就是什么路径.第一个参数不再是正则表达式. 转换器 path的分组 <int:year> 匹配正整数 <str:year ...

  5. Mapper动态代理方式

    开发规范 Mapper接口开发方法只需要程序员编写Mapper接口(相当于Dao接口),由Mybatis框架根据接口定义创建接口的动态代理对象,代理对象的方法体同Dao接口实现类方法. Mapper接 ...

  6. 收藏一个带动画效果的ScrollViewer以及ScrollBar的模板

    这里介绍一个带动画效果的ScrollViewer和ScrollBar,总共分为两个资源字典,直接拿来引用即可: 1 ScrollBarStyle.xaml <ResourceDictionary ...

  7. 一、Dev单元格

    二.获取表格数据 int selectRow = gridView1.GetSelectedRows()[0]; string id = this.gridView1.GetRowCellValue( ...

  8. Windows Server 2012 Hyper-V 快照

    快照 Hyper-V 可提供擷取執行中虛擬機器快照的能力,因此可輕易地回復至前一狀態,對於測試環境相當有幫助. 快照的功用雖然很不錯,不過每次建立快照時都是會消耗相當的硬碟資源,尤其目前的快照點和上一 ...

  9. 安装 BizTalk Server 2016

    在单台计算机上安装 BizTalk Server. 开始操作之前       系统管理员 – 安装 SQL Server 时,安装程序会自动向登录的帐户授予系统管理员权限. 由于安装 BizTalk ...

  10. React 学习(四) ---- 生命周期函数

    现在我们能修改状态,页面可以进行交互了,但是还有一种状态改变没有解决,那就是倒计时效果,时间一直在变化,组件状态也一直在改变,但我们什么都没有做,如果要实现这样的效果,需要怎么处理? 我们都知道,改变 ...