小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。

游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。

现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。

Solution

神题。

注意到d不是很大,所以可以设计一个NK的状态:dp[i][j]表示i这个点为根的子树已经处理完了,它还能在向上覆盖j个点的最小代价。

但是还有可能会出现子树之间相互覆盖的情况,所以我们用f[i][j]表示以i为根的子树向下还有j个点没有覆盖的最小代价。

转移:

考虑dp数组如何转移。

dp[u][j]<-min(dp[u][j]+f[v][j](u刚好能够向下覆盖j个),dp[v][j+1]+f[u][j+1]);

相当于是我们把v合并到了当前子树中。

f数组可以直接累加答案,f[i][j]+=f[v][j-1]。

最后结合一下贪心的思想,对于f数组,j越大答案应越小,对于dp数组,j越小答案也应越小,做完之后取一下min

然后还要注意一下边界,dp[u][0]=0.dp[u][~]=w[u].当vis[u]=1时f[u][0]=dp[u][0]=w[u];

Code

#include<iostream>
#include<cstdio>
#define N 500003
#define inf 0x3f3f3f3f
using namespace std;
int x,y,w[N],head[N],tot,f[N][],d,dp[N][],n,m,tag[N];
struct zzh{
int n,to;
}e[N<<];
inline void add(int u,int v){
e[++tot].n=head[u];
e[tot].to=v;
head[u]=tot;
}
void dfs(int u,int fa){
if(tag[u])dp[u][]=f[u][]=w[u];
for(int i=;i<=d;++i)dp[u][i]=w[u];
dp[u][d+]=inf;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa){
int v=e[i].to;
dfs(v,u);
for(int j=d;j>=;--j)dp[u][j]=min(dp[u][j]+f[v][j],dp[v][j+]+f[u][j+]);
for(int j=d;j>=;--j)dp[u][j]=min(dp[u][j],dp[u][j+]);
f[u][]=dp[u][];
for(int j=;j<=d+;++j)f[u][j]+=f[v][j-];
for(int j=;j<=d+;++j)f[u][j]=min(f[u][j],f[u][j-]);
}
}
inline int rd(){
int x=;bool f=;char c=getchar();
while(!isdigit(c)){
if(c=='-')f=;
c=getchar();
}
while(isdigit(c)){
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return f?-x:x;
}
int main(){
n=rd();d=rd();
for(int i=;i<=n;++i)w[i]=rd();
m=rd();
for(int i=;i<=m;++i)x=rd(),tag[x]=;
for(int i=;i<n;++i)x=rd(),y=rd(),add(x,y),add(y,x);
dfs(,);
cout<<f[][];
return ;
}

[JLOI2016/SHOI2016]侦察守卫(树形dp)的更多相关文章

  1. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  2. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  3. Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)

    树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...

  4. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

  5. P3267 [JLOI2016/SHOI2016]侦察守卫

    $ \color{#0066ff}{ 题目描述 }$ 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的 ...

  6. BZOJ 4557 JLOI2016 侦查守卫 树形dp

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...

  7. BZOJ4557:[JLOI2016/SHOI2016]侦察守卫——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4557 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点, ...

  8. 【BZOJ4557】[JLoi2016]侦察守卫 树形DP

    [BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...

  9. [JLOI2016/SHOI2016]侦察守卫

    嘟嘟嘟 这道题可以说是[HNOI2003]消防局的设立的升级版.距离从2改为了d. 辛亏d只有20,这也就是一个切入点. 令f[u][j]表示u四周 j - 1的距离需要被覆盖,g[u][j]表示u可 ...

随机推荐

  1. CentOS 7 安装配置带用户认证的squid代理服务器

    这里只简述搭建一个带用户认证的普通代理 一.安装 安装过程十分简便,只需要安装一下squid,一条命令搞定 yum install squid rpm -qa | grep squid squid-- ...

  2. 微信小程序开发的基本流程

    微信小程序开发的基本流程 一,微信小程序简介 1,微信小程序简称小程序,张小龙在微信公开课 Pro 上发布的小程序正式上线,时间是2017年1月9日. 2,微信小程序这个词可以分解为“微信”和“小程序 ...

  3. Oracle RMAN备份与还原

    RMAN在数据库服务器的帮助下实现数据库文件.控制文件.数据库文件与控制文件的映像副本.归档日志文件.数据库服务器参数文件的备份. RMAN的特点: (1) 支持增量备份:传统的exp与expdp备份 ...

  4. Client将数据读写HDFS流程

    HDFS介绍 HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的. 什么是分布式文件系统 分布式文件系统(Dist ...

  5. rabbitmq 配置

    1, 安装 apt-get install rabbitmq-server -y 2, 打开管理页面 sudo rabbitmq-plugins enable rabbitmq_management ...

  6. TestNG之测试执行后没有生成默认测试报告(IDEA)

    使用IDEA+TestNG进行测试,没有生成 测试报告,是因为没有勾选监听器使用默认报告,具体操作如下: “Run” -> "Edit Configurations" -&g ...

  7. LODOP安装参数 及静默安装

    在cmd命令里里静默安装lodop(c-lodop不能静默安装),本人的安装文件放在D:\lodopdownload\3060\Lodop6.224_Clodop3.060,如下所示: lodop静默 ...

  8. MySQL 索引长度和区分度

    首先  索引长度和区分度是相互矛盾的, 索引长度太短,那么区分度就很低,吧索引长度加长,区分度就高,但是索引也是要占内存的,所以我们需要找到一个平衡点: 那么这个平衡点怎么来定? 比如用户表有个字段 ...

  9. cf- Educational Codeforces Round 40 -D

    题意:给你n个点,m条边,一个起点s,一个终点t的无向图,问在某两个点之间加一条边,不改变s到t的最短路径的值的加法有多少种,所有点一定连接: 思路:首先,默认相邻两点的权值都为1,会改变值的情况有: ...

  10. hdu1839(最小生成树)

    题意:字面意思: 思路:就是多了一个前提,有些点之间可能有边,有两个处理方法,一个是有边的,这条边权值归零,另一个是,先一次循环用并查集过一遍: 代码:(用的是第一种方法) #include<i ...