BZOJ 4318 OSU!(概率DP)
题意
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
分析
对于一个长度为x的1,我们要计算其贡献,应该从上一次长度为x-1转移过来,那么自然有 (x+1)^3−x^3=3x^2+3x+1
这样依次维护x^2和x就好。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const int maxm = 1e5+;
const ll mod = 1e9+;
double p,h[maxn],g[maxn],f[maxn];
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int n;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lf",&p);
h[i]=(h[i-]+)*p;
g[i]=(g[i-]+h[i-]*+)*p;
f[i]=f[i-]+(*h[i-]+*g[i-]+)*p;
}
printf("%.1f\n",f[n]);
return ;
}
BZOJ 4318 OSU!(概率DP)的更多相关文章
- BZOJ 4318 OSU! (概率DP)
题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...
- BZOJ 4318: OSU! 期望DP
4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...
- bzoj 4318 OSU 概率期望dp
可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...
- bzoj 4318 OSU! —— 期望DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...
- BZOJ - 4318: OSU! (期望DP&Attention)
Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...
- BZOJ 4318 OSU! ——期望DP
这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...
- BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP
这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...
- BZOJ 4318: OSU! [DP 概率]
传送门 题意:变成了告诉每个操作的成功概率,并且得分是三次方 一样....分别维护$x,\ x^2,\ x^3$的期望就行了 注意$x^3$是我们最终求的得分,即使失败得分也要累加上之前的 #incl ...
- bzoj 4318 OSU! - 动态规划 - 概率与期望
Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...
随机推荐
- CCF WC2017 & THU WC2017 旅游记
day-x 真·旅游 去了杭州的一些景点,打了几场练习赛. day0 报到日 领资料.入住,中午在食堂吃饭,感觉做的挺好的,和二高食堂差不多.晚上还有开幕式. day1~day4 白天讲课,晚上营员交 ...
- hdu 4825 Xor Sum (01 Trie)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 题面: Xor Sum Time Limit: 2000/1000 MS (Java/Others) ...
- Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) A - D2
A. Be Positive 链接:http://codeforces.com/contest/1130/problem/A 题意: 给一段序列,这段序列每个数都除一个d(−1e3≤d≤1e3)除完后 ...
- SDOI2017 Round1 简要题解
我们 TM 怎么又要上文化课..我 哔哔哔哔哔哔 「SDOI2017」数字表格 题意 有 \(T\) 组数据,求 \[ \prod_{i = 1}^{n} \prod_{j = 1}^{m} fib[ ...
- Angular、React.js 和Node.js到底选谁?
为了工作,程序员选择正确的框架和库来构建应用程序是至关重要的,这也就是为什么Angular和React之间有着太多的争议.Node.js的出现,让这场战争变得更加复杂,虽然有选择权通常是一件很棒的事情 ...
- rt-thread中线程内置定时器的作用 ---
@2019-01-15 [小记] 常见到在内核组件的接口函数中,配置和启动一个定时器后,启动线程调度 我猜想是超时时间到达后恢复调用接口函数的线程以执行线程调度语句后的代码
- 152. Maximum Product Subarray 以及 讨论【最大连续子序列】
题目大意: 连续最大子段积 题目思路: 最大值只能产生在一个正数x一个正数,一个负数乘一个负数,所以维护两个值,一个区间最大值,一个最小值 其他的话: 在讨论这个问题之前,我先来说一说大一刚开学就学了 ...
- CF1131F Asya And Kittens(Kruskal重构树,启发式合并)
这题难度1700,我感觉又小了…… 这题虽然没几个人是用kruskal重构树的思想做的,但是我是,所以我就放了个kruskal重构树的标签. 题目链接:CF原网 题目大意:有一个长为 $n$ 的排列, ...
- Opennebula常用命令
查看虚拟机状态信息: [oneadmin@localhost /]$ onevm list 查看虚拟机配置: [oneadmin@localhost /]$ onevm show 25 启动虚拟机: ...
- JVM源码分析之一个Java进程究竟能创建多少线程
JVM源码分析之一个Java进程究竟能创建多少线程 原创: 寒泉子 你假笨 2016-12-06 概述 虽然这篇文章的标题打着JVM源码分析的旗号,不过本文不仅仅从JVM源码角度来分析,更多的来自于L ...