题意

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。

分析

对于一个长度为x的1,我们要计算其贡献,应该从上一次长度为x-1转移过来,那么自然有 (x+1)^3−x^3=3x^2+3x+1

这样依次维护x^2和x就好。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1.0)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5+;
const int maxm = 1e5+;
const ll mod = 1e9+;
double p,h[maxn],g[maxn],f[maxn];
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
int n;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lf",&p);
h[i]=(h[i-]+)*p;
g[i]=(g[i-]+h[i-]*+)*p;
f[i]=f[i-]+(*h[i-]+*g[i-]+)*p;
}
printf("%.1f\n",f[n]);
return ;
}

BZOJ 4318 OSU!(概率DP)的更多相关文章

  1. BZOJ 4318 OSU! (概率DP)

    题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...

  2. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  3. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

  4. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  5. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  6. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  7. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  8. BZOJ 4318: OSU! [DP 概率]

    传送门 题意:变成了告诉每个操作的成功概率,并且得分是三次方 一样....分别维护$x,\ x^2,\ x^3$的期望就行了 注意$x^3$是我们最终求的得分,即使失败得分也要累加上之前的 #incl ...

  9. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

随机推荐

  1. 【XSY2708】hack 网络流

    题目描述 给你一个图,每条边有一个权值.要求你选一些边,满足对于每条从\(1\)到\(n\)的路径上(可以不是简单路径)有且仅有一条被选中的边.问你选择的边的边权和最小值. \(n\leq 100\) ...

  2. Java归并排序的递归与非递归实现

    该命题已有无数解释,备份修改后的代码 平均时间复杂度: O(NLogN)  以2为底 最好情况时间复杂度: O(NLogN) 最差情况时间复杂度: O(NLogN) 所需要额外空间: 递归:O(N + ...

  3. 使用gradle命令代替CUBA Studio,启动项目

    在cuba platform开发中,一开始都会使用CUBA Studio,这是一个脚手架,可以很方便的创建数据表.视图.Bean等.但是有时也会有奇怪的问题,比如不能读取本地maven 仓库,只读取远 ...

  4. Breakable loop in Scratch

    Breakable loop in Scratch https://stackoverflow.com/questions/30682144/breakable-loop-in-scratch Bre ...

  5. 牛客练习赛43 Tachibana Kanade Loves Probability(快速幂)

    链接:https://ac.nowcoder.com/acm/contest/548/B来源:牛客网 题目描述 立华奏在学习初中数学的时候遇到了这样一道大水题: “设箱子内有 n 个球,其中给 m 个 ...

  6. NOIp2018爆零记

    Day-2~Day0 考前抱佛脚,赶紧刷刷各种模板 Day 1 在开考之前打好了拍子模板,然后试题密码就发下来了(这是我前面的神仙打了\(100\)多行\(emacs\)的配置\(QAQ\)). 先按 ...

  7. Ubuntu 18.04 安装微信(Linux通用)

    Linux相关的知识:https://www.cnblogs.com/dunitian/p/4822808.html#linux 新增谷歌浏览器添加到桌面的彻底删除:https://www.cnblo ...

  8. mysql查看正在执行的sql语句

    有2个方法: 1.使用processlist,但是有个弊端,就是只能查看正在执行的sql语句,对应历史记录,查看不到.好处是不用设置,不会保存. -- use information_schema; ...

  9. MyQR库自动为网址生成二维码

    首先安装MyQR库: pip install MyQR #导包 from MyQR import myqr #生成二维码 words=你要为那个网址生成二维码 save_name=保存后的图片名 pi ...

  10. python 当前时间获取方法

    1.先导入库:import datetime 2.获取当前日期和时间:now_time = datetime.datetime.now() 3.格式化成我们想要的日期:strftime() 比如:“2 ...