题目大意:给定一棵 N 个节点的有根树,1 号节点是树的根节点,每个节点有一个颜色。求对于每个节点来说,能够支配整棵子树的颜色之和是多少。支配的定义为对于以 i 为根的子树,该颜色出现的次数不小于任何其他颜色出现的次数。

题解:学会了 dsu on tree。

树上启发式合并算法是一种对暴力的优化算法。对于暴力算法来说,直接遍历每个节点,再遍历该节点对应的子树寻找答案,时间复杂度显然为 \(O(n^2)\)。考虑进行优化,显然对于父节点来说,遍历到的最后一棵子树的贡献可以不用消去,直接加在父节点对应的子树上即可。根据这条性质,每次都选择 i 的重儿子进行直接累加答案贡献,重儿子的定义和求法与树剖中重儿子相同。可以看出对于树上每个节点,在统计答案的时候仅仅遍历了子树内的所有轻边,即:重儿子对应的子树再合并时不需要再次遍历。从全局的角度来说,对于第 i 个节点为根的子树,子树在统计答案时被遍历的次数和该节点到根节点路径上的轻边个数成正比。一共只有 \(O(logn)\) 条轻边,因此,遍历 n 个节点的时间复杂度上界为 \(O(nlogn)\)。

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=1e5+10;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll fpow(ll a,ll b,ll c){ll ret=1%c;for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;return ret;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*------------------------------------------------------------*/ vector<int> G[maxn];
int size[maxn],son[maxn];
int n,cor[maxn],cnt[maxn];
bool skip[maxn];
ll mx,now,ans[maxn]; void getsize(int u,int fa){
size[u]=1;
for(auto v:G[u]){
if(v==fa)continue;
getsize(v,u);
if(size[v]>size[son[u]])son[u]=v;
size[u]+=size[v];
}
}
void add(int u,int fa,int val){
cnt[cor[u]]+=val;
if(val>0){
if(cnt[cor[u]]>mx)now=cor[u],mx=cnt[cor[u]];
else if(cnt[cor[u]]==mx)now+=cor[u];
}
for(auto v:G[u]){
if(v==fa||skip[v])continue;
add(v,u,val);
}
}
void dfs(int u,int fa,bool keep){
for(auto v:G[u]){
if(v==fa||v==son[u])continue;
dfs(v,u,0);
}
if(son[u])dfs(son[u],u,1),skip[son[u]]=1;
add(u,fa,1);
ans[u]=now;
if(son[u])skip[son[u]]=0;
if(!keep)add(u,fa,-1),mx=now=0;
} void read_and_parse(){
n=read();
for(int i=1;i<=n;i++)cor[i]=read();
for(int i=1,x,y;i<n;i++){
x=read(),y=read();
G[x].pb(y),G[y].pb(x);
}
}
void solve(){
getsize(1,0);
dfs(1,0,1);
for(int i=1;i<=n;i++)printf("%lld%c",ans[i],i==n?'\n':' ');
}
int main(){
read_and_parse();
solve();
return 0;
}

【CF600E】Lomsat gelral的更多相关文章

  1. 【CF600E】Lomsat gelral(dsu on tree)

    [CF600E]Lomsat gelral(dsu on tree) 题面 洛谷 CF题面自己去找找吧. 题解 \(dsu\ on\ tree\)板子题 其实就是做子树询问的一个较快的方法. 对于子树 ...

  2. 【CF600E】 Lomsat gelral

    CF600E Lomsat gelral Solution 考虑一下子树的问题,我们可以把一棵树的dfn序搞出来,那么子树就是序列上的一段连续的区间. 然后就可以莫队飞速求解了. 但是这题还有\(\T ...

  3. 【CF600E】Lomsat gelral——树上启发式合并

    (题面来自luogu) 题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. ci <= n <= 1e5 裸题.统计时先扫一遍得到出 ...

  4. 【CF600E】Lomset gelral 题解(树上启发式合并)

    题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...

  5. 「CF600E」Lomsat gelral

    传送门 Luogu 解题思路 线段树合并板子题(也可以 dsu on the tree) 好像没什么好讲的,就是要注意开 long long . 细节注意事项 咕咕咕 参考代码 #include &l ...

  6. 【CodeForces】600 E. Lomsat gelral (dsu on tree)

    [题目]E. Lomsat gelral [题意]给定n个点的树,1为根,每个点有一种颜色ci,一种颜色占领一棵子树当且仅当子树内没有颜色的出现次数超过它,求n个答案——每棵子树的占领颜色的编号和Σc ...

  7. 【Codeforces】600E. Lomsat gelral

    Codeforces 600E. Lomsat gelral 学习了一下dsu on tree 所以为啥是dsu而不是dfs on tree??? 这道题先把这棵树轻重链剖分了,然后先处理轻儿子,处理 ...

  8. CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths

    Lomsat gelral 一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和). \(n \le 10^ ...

  9. 【主席树启发式合并】【P3302】[SDOI2013]森林

    Description 给定一个 \(n\) 个节点的森林,有 \(Q\) 次操作,每次要么将森林中某两点联通,保证操作后还是个森林,要么查询两点间权值第 \(k\) 小,保证两点联通.强制在线. L ...

随机推荐

  1. 设计模式之原型模式(c++)

    问题描述 看到这个模式,很容易想到小时候看的<西游记>,齐天大圣孙悟空发飙的时候可以通过自己头上的 3 根毛立马复制出来成千上万的孙悟空, 对付小妖怪很管用(数量最重要). Prototy ...

  2. Spring 基于XML配置

    基于XML的配置 对于基于XML的配置,Spring 1.0的配置文件采用DTD格式,Spring2.0以后采用Schema格式,后者让不同类型的配罝拥有了自己的命名空间,使得配置文件更具扩展性.此外 ...

  3. Flutter路由管理

    第一点:push使用 1.pushNamed——Navigator.of(context).pushNamed('routeName'); 此种方法只是简单的将我们需要进入的页面push到栈顶,以此来 ...

  4. eclipse 部署项目

  5. NIO和经典IO

    NIO未必更快,在Linux上使用Java6完成的测试中,多线程经典I/O设计胜出NIO30%左右 异步I/O强于经典I/O:服务器需要支持超大量的长期连接,比如10000个连接以上,不过各个客户端并 ...

  6. js auto hover button & html5 button autofocus

    js auto hover button & html5 button autofocus input // html 5 <input name="myinput" ...

  7. ASP.Net Post方式获取数据流的一种简单写法

    public static string PostWebReq(string PostUrl, string ParamData, Encoding DataEncode)        {      ...

  8. 【python练习题】程序12

    #题目:判断101-200之间有多少个素数,并输出所有素数. #判断素数的方法:用一个数分别去除2到sqrt(这个数),如果能被整除,则表明此数不是素数,反之是素数. from math import ...

  9. hibernate多对多映射文件的配置

    user.hbm.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate ...

  10. Sass(1)--- 了解Sass的发展

    1, Sass 其实是一门编程语言,用来书写css, 它对变量的声明,注释等作出了一系列的规定. 其实Sass写出的文件为SCSS, 它还需要编译成真正的css,供浏览器使用. 2, Sass 的编译 ...