传送门

颓了一小时柿子orz

首先题目要求的是$$\sum_{x_1=l}{r}\sum_{x_2=l}{r}...\sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]$$

显然可以除掉一个k,设\(x=\lceil\frac{l}{k}\rceil,y=\lfloor\frac{l}{k}\rfloor\)即$$\sum_{x_1=x}{y}\sum_{x_2=x}{y}...\sum_{x_n=x}^{y}[gcd(x_1,x_2...x_n)=1]$$

可以联系两个数的情况,也就是$$\begin{matrix} \sum_{i=1}{n}\sum_{j=1}{m}[gcd(i,j)=1] &= \sum_{i=1}{n}\sum_{j=1}{m}\sum_{d|i,d|j}\mu(d)\ &=\sum_{d=1}^{min(n,m)}\mu(d)\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor \end{matrix}$$

这里有n个数也是类似的,即$$\sum_{d=1}{y}\mu(d)(\lfloor\frac{y}{d}\rfloor-\lfloor\frac{x-1}{d}\rfloor)n$$

注意后半部分,我们要求的是区间\([x,y]\)的d的倍数个数,也就是两个前缀和的差

然后数论分块即可.注意数据范围,\(\mu\)的前缀和要用杜教筛求

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register using namespace std;
const int N=1e6+10,mod=1e9+7;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
il int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int n,kk,l,r;
int prm[N],mu[N],mu2[N],pp[N],tt,ans;
bool v[N];
il int gmu(int x)
{
if(x<=N-10) return mu[x];
if(v[x/10000]) return mu2[x/10000];
v[x/10000]=1;
LL an=1;
for(int i=2,j;i<=x;i=j+1)
{
j=(x/(x/i));
an-=1ll*gmu(x/i)*(j-i+1);
}
return mu2[x/10000]=an;
} int main()
{
n=rd(),kk=rd(),l=rd(),r=rd();
l=(l+kk-1)/kk-1,r/=kk;
mu[1]=1;
for(int i=2;i<=N-10;++i)
{
if(!pp[i]) pp[i]=1,mu[i]=-1,prm[++tt]=i;
for(int j=1;j<=tt&&i*prm[j]<=N-10;++j)
{
pp[i*prm[j]]=1,mu[i*prm[j]]=-mu[i];
if(i%prm[j]==0) {mu[i*prm[j]]=0;break;}
}
}
for(int i=2;i<=N-10;++i) mu[i]+=mu[i-1];
for(int i=1,j=1;i<=r;++j,i=j)
{
j=min(l>=i?l/(l/i):(int)1e9,r/(r/i));
ans=((ans+1ll*(gmu(j)-gmu(i-1))*fpow(r/i-l/i,n)%mod)%mod+mod)%mod;
}
printf("%d\n",ans);
return 0;
}

luogu P3172 [CQOI2015]选数的更多相关文章

  1. P3172 [CQOI2015]选数(莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solutio ...

  2. Luogu 3172 [CQOI2015]选数

    考虑枚举$k$的倍数$dk$,容易知道$\left \lceil \frac{L}{K} \right \rceil\leq d\leq \left \lfloor \frac{H}{k} \righ ...

  3. 洛谷P3172 [CQOI2015]选数(容斥)

    传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...

  4. [bzoj3930] [洛谷P3172] [CQOI2015] 选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  6. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  7. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  8. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  9. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

随机推荐

  1. Git多个SSH KEYS解决方案(含windows自动化、TortoiseGit、SourceTree等)

    工作过程中,经常会使用到多个git仓库,每个git仓库对应一个账号,可以理解为每个git仓库对应一个ssh key,因此我们需要管理多个ssh key.   一.快速创建ssh key   1. 创建 ...

  2. Vue -- 双向过滤器去除html标签

    <div id="box"> <input type="text" v-model="msg | filterHtml"& ...

  3. Django(十)COOKIE和session

    https://www.cnblogs.com/haiyan123/p/7763169.html from django.shortcuts import render,redirect # Crea ...

  4. 初始redis数据库

    redis就是一个类似于存储在内存中的大字典 安装: windows下安装redis: 你需要在你的环境下安装: pip install redis 以上是在你的全局环境安装, 你如果用的是虚拟环境你 ...

  5. Mock4 moco框架中如何加入cookies

    新建一个 startupWithCookies.json,因为cookies也是请求当中带的,所以,要写在request里面,cookies是k-v的形式,就拿登陆来说吧,登陆以后会的cookies, ...

  6. JS事件(五)内存与性能

    1.减少代码中事件处理程序的数量,是减少内存开销,提升网页速度的有效手段 事件委托: <ul id="ul"> <li id="goSomewhere& ...

  7. Unable to find ‘struts.multipart.saveDir’ Struts2上传文件错误的解决方法

    Unable to find ‘struts.multipart.saveDir’ Struts2上传文件错误的解决方法 在使用struts2的项目中上传文件的时候出现了一个这样的错误: 2011-7 ...

  8. day12-(jsp&el&jstl)

    回顾: jsp: cookie: 浏览器端会话技术 由服务器产生,生成key=value形式,通过响应头(set-cookie)返回给浏览器,保存在浏览器端 下次访问的时候根据一定的规则携带cooki ...

  9. 如何在springcloud分布式系统中实现分布式锁?

    一.简介 一般来说,对数据进行加锁时,程序先通过acquire获取锁来对数据进行排他访问,然后对数据进行一些列的操作,最后需要释放锁.Redis 本身用 watch命令进行了加锁,这个锁是乐观锁.使用 ...

  10. Go多组Raft库

    Go多组Raft库 https://github.com/lni/dragonboat/blob/master/README.CHS.md 使用用例 https://github.com/lni/dr ...