题目描述

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

输入

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

输出

  不同染法除以P的余数

样例输入

1 1 1 2 7
2 3 1
3 1 2

样例输出

2

提示

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。
100%数据满足 Max{Sr,Sb,Sg}<=20。

我们知道$polya$定理是不动点方案$=\frac{1}{|G|}\sum\limits_{f\in G}^{ }m^{c(f)}$,其中$f$代表一种置换,而$c(f)$则代表在置换$f$下的循环数。因为在一种置换中同一循环的元素的颜色必须相同,所以每种置换的染色方案数为$m^{c(f)}$,而本题限制了每种颜色的染色数量所以不能直接套用公式。对于每种置换,假设其中有一个大小为$k$的循环,那么可以将它看做是一个大小为$k$的物品。那么我们要求的就是有若干个物品,要求将他们染色并使染成每种颜色的物品总大小分别为$Sr,Sg,Sb$,直接做一遍多维背包即可求出方案数。最后不要忘记不洗牌也是一种置换。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int a,b,c,m,p;
int n;
int v[100];
int f[30][30][30];
int vis[100];
int cnt;
int q[100];
ll ans;
ll quick(int x,int y)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%p;
}
y>>=1;
x=1ll*x*x%p;
}
return res;
}
int solve()
{
memset(q,0,sizeof(q));
memset(f,0,sizeof(f));
memset(vis,0,sizeof(vis));
cnt=0;
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
int sum=0;
int now=i;
while(!vis[now])
{
sum++;
vis[now]=1;
now=v[now];
}
q[++cnt]=sum;
}
}
f[0][0][0]=1;
for(int s=1;s<=cnt;s++)
{
int x=q[s];
for(int i=a;i>=0;i--)
{
for(int j=b;j>=0;j--)
{
for(int k=c;k>=0;k--)
{
if(i>=x)
{
f[i][j][k]+=f[i-x][j][k];
f[i][j][k]%=p;
}
if(j>=x)
{
f[i][j][k]+=f[i][j-x][k];
f[i][j][k]%=p;
}
if(k>=x)
{
f[i][j][k]+=f[i][j][k-x];
f[i][j][k]%=p;
}
}
}
}
}
return f[a][b][c];
}
int main()
{
scanf("%d%d%d%d%d",&a,&b,&c,&m,&p);
n=a+b+c;
for(int j=1;j<=m;j++)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
}
ans+=solve();
ans%=p;
}
for(int i=1;i<=n;i++)
{
v[i]=i;
}
ans+=solve();
ans%=p;
ans*=quick(m+1,p-2);
ans%=p;
printf("%lld",ans);
} 

BZOJ1004[HNOI2008]Cards——polya定理+背包的更多相关文章

  1. [BZOJ1004] [HNOI2008] Cards (Polya定理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  2. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

  3. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  4. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  5. BZOJ1004 [HNOI2008]Cards(Polya计数)

    枚举每个置换,求在每个置换下着色不变的方法数,先求出每个循环的大小,再动态规划求得使用给定的颜色时对应的方法数. dp[i][j][k]表示处理到当前圈时R,B,G使用量为i,j,k时的方法数,背包思 ...

  6. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  7. bzoj1004 [HNOI2008]Cards 置换群+背包

    [bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...

  8. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  9. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

随机推荐

  1. Sequelize 连接微软云数据库 SQL Azure

    function getConnection(){ var sequelize=new Sequelize("DBName","sa","000000 ...

  2. git 的 cat-file 的命令用法

    命令选项 git cat-file 的命令显示版本库对象的内容.类型.及大小信息. -t  Instead of the content, show the object type identifie ...

  3. oracle 11g空表不能exp导出问题解决方案

    oracle 11g空表不能exp导出问题解决方案 最近由于要进行迁移服务器代码和数据库,突然发现导出的表少了,通过排查发现空表尽然没有exp导出,真是郁闷啊,虽然是空表没数据,但也不能没有啊,如何是 ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛-I模拟题啊!!!

    垃圾题,题目巨TM长...这题题意就是说给你一个16进制串,让你把每一位转成长度为4的2进制数,并把这些数连接起来,连接完成后,进行奇偶校验,把字符串切割成每个长度为9的字符串,然后计算前8位的 1的 ...

  5. 用WSDL4J解析types标签中的内容

    WSDL4J是一种用来解析WSDL文本的常用工具. 但网络上用WSDL4J来解析wsdl文档complexType标签中内容的问题一大堆也没有有效的解决方法.今天在我“遍历”wsdl4j的api文档和 ...

  6. 会议室预订系统(meeting room booking system)

    一.mrbs mrbs:(meeting room booking system) 二.效果   三.models from django.db import models # Create your ...

  7. Nginx Configuring HTTPS servers

    Configuring HTTPS servershttp://nginx.org/en/docs/http/configuring_https_servers.html Configuring HT ...

  8. # 【Python3练习题 003】一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?

    # -------------------------------------------------## 所谓的“完全平方数”,就是开完根号仍然是整数.## 数学渣是这么思考的:假设这个数 i 在1 ...

  9. MySQL 查询语句中自己定义的中文内容在Java Web 中显示为问号

    Java Web 端做查询时,性别字段存的是数字,1代表男,2代表女,取数据时将性别转为汉字显示在页面,sql语句如下,结果发生了问题  select a.emp_id,a.emp_name ,cas ...

  10. HDU 2459 Maximum repetition substring

    题目:Maximum repetition substring 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2459 题意:给你一个字符串,求连续重复出现 ...