Event Recommendation Engine Challenge分步解析第七步
一、请知晓
本文是基于:
Event Recommendation Engine Challenge分步解析第一步
Event Recommendation Engine Challenge分步解析第二步
Event Recommendation Engine Challenge分步解析第三步
Event Recommendation Engine Challenge分步解析第四步
Event Recommendation Engine Challenge分步解析第五步
Event Recommendation Engine Challenge分步解析第六步
需要读者先阅读前六篇文章解析
二、模型构建和预测
实际上在上述特征构造好了之后,我们有很多的办法去训练得到模型和完成预测,这里用了sklearn中的SGDClassifier 事实上xgboost有更好的效果(显然我们的特征大多是密集型的浮点数,很适合GBDT这样的模型)
注意交叉验证,我们这里用了10折的交叉验证
import pandas as pd
import numpy as np
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import KFold
import warnings
warnings.filterwarnings('ignore') def train():
"""
在我们得到的特征上训练分类器,target为1(感兴趣),或者是0(不感兴趣)
"""
trainDf = pd.read_csv('data_train.csv')
X = np.matrix( pd.DataFrame(trainDf, index=None, columns=['invited', 'user_reco', 'evt_p_reco',
'evt_c_reco','user_pop', 'frnd_infl', 'evt_pop']) )
y = np.array(trainDf.interested) clf = SGDClassifier(loss='log', penalty='l2')
clf.fit(X, y)
return clf def validate():
"""
10折的交叉验证,并输出交叉验证的平均准确率
"""
trainDf = pd.read_csv('data_train.csv')
X = np.matrix(pd.DataFrame(trainDf, index=None, columns=['invited', 'user_reco', 'evt_p_reco',
'evt_c_reco','user_pop', 'frnd_infl', 'evt_pop']) )
y = np.array(trainDf.interested) nrows = len(trainDf)
kfold = KFold(n_splits=10,shuffle=False)
avgAccuracy = 0
run = 0
for train, test in kfold.split(X, y):
Xtrain, Xtest, ytrain, ytest = X[train], X[test], y[train], y[test]
clf = SGDClassifier(loss='log', penalty='l2')
clf.fit(Xtrain, ytrain)
accuracy = 0
ntest = len(ytest)
for i in range(0, ntest):
yt = clf.predict(Xtest[i, :])
if yt == ytest[i]:
accuracy += 1 accuracy = accuracy / ntest
print('accuracy(run %d) : %f' % (run, accuracy) ) def test(clf):
"""
读取test数据,用分类器完成预测
"""
origTestDf = pd.read_csv("test.csv")
users = origTestDf.user
events = origTestDf.event testDf = pd.read_csv("data_test.csv")
fout = open("result.csv", 'w')
fout.write(",".join(["user", "event", "outcome", "dist"]) + "\n") nrows = len(testDf)
Xp = np.matrix(testDf)
yp = np.zeros((nrows, 2)) for i in range(0, nrows):
xp = Xp[i, :]
yp[i, 0] = clf.predict(xp)
yp[i, 1] = clf.decision_function(xp)
fout.write(",".join( map( lambda x: str(x), [users[i], events[i], yp[i, 0], yp[i, 1]] ) ) + "\n")
fout.close() clf = train()
validate()
test(clf)
print('done')
三、感谢
Event Recommendation Engine Challenge分步解析第七步的更多相关文章
- Event Recommendation Engine Challenge分步解析第六步
一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...
- Event Recommendation Engine Challenge分步解析第五步
一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...
- Event Recommendation Engine Challenge分步解析第四步
一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...
- Event Recommendation Engine Challenge分步解析第三步
一.请知晓 本文是基于: Event Recommendation Engine Challenge分步解析第一步 Event Recommendation Engine Challenge分步解析第 ...
- Event Recommendation Engine Challenge分步解析第二步
一.请知晓 本文是基于Event Recommendation Engine Challenge分步解析第一步,需要读者先阅读上篇文章解析 二.用户相似度计算 第二步:计算用户相似度信息 由于用到:u ...
- Event Recommendation Engine Challenge分步解析第一步
一.简介 此项目来自kaggle:https://www.kaggle.com/c/event-recommendation-engine-challenge/ 数据集的下载需要账号,并且需要手机验证 ...
- Netty 源码解析(七): NioEventLoop 工作流程
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第七篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- (转) Quick Guide to Build a Recommendation Engine in Python
本文转自:http://www.analyticsvidhya.com/blog/2016/06/quick-guide-build-recommendation-engine-python/ Int ...
- 卷积神经网络 cnnff.m程序 中的前向传播算法 数据 分步解析
最近在学习卷积神经网络,哎,真的是一头雾水!最后决定从阅读CNN程序下手! 程序来源于GitHub的DeepLearnToolbox 由于确实缺乏理论基础,所以,先从程序的数据流入手,虽然对高手来讲, ...
随机推荐
- django---一对多和多对多字段的操作训练
建表准备: django项目models.py建表 from django.db import models class Myclass(models.Model): cname = models.C ...
- mfs 使用心得
CentOS的安装方法: To install MooseFS from officially supported repository on EL7, follow the steps below: ...
- POJ 2750 鸡兔同笼
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6414781.html POJ 2750鸡兔同笼 总时间限制:1000ms 内存限制:65536kB ...
- Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)
mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...
- django 配置邮件发送 send_email
导入 send_email 所用方法导入 from django.core.mail import send_mail 因为使用的需要指明 发送人 所以要把 setting.py 中的 EMAIL_F ...
- require.js基本用法
1.require.js的加载 使用require.js的第一步,是先去官方网站下载最新版本. 下载后,假定把它放在js子目录下面,就可以加载了. 1 <script src="js/ ...
- 【CodeForces 717C】Potions Homework
BUPT 2017 summer training (for 16) #1G 题意 每个人有一个懒惰值,每个任务有个难度,一开始每个人的任务和懒惰值都为\(a_i\),完成任务时间是懒惰值乘以难度,现 ...
- 【Hihocoder1413】Rikka with String(后缀自动机)
[Hihocoder1413]Rikka with String(后缀自动机) 题面 Hihocoder 给定一个小写字母串,回答分别把每个位置上的字符替换为'#'后的本质不同的子串数. 题解 首先横 ...
- 外围功能电路控制 LET′S TRY“嵌入式编程”: 4 of 6
外围功能电路控制 LET′S TRY“嵌入式编程”: 4 of 6 本连载讲解作为嵌入式系统开发技术人员所必需具备的单片机的基础知识. 在<单片机入门(1)-(3)>中,我们一起学习了单片 ...
- 20165223《JAVA程序设计》第二周学习总结
20165223 <JAVA程序设计>第二周学习总结 教材学习内容总结 第二章要点 标识符与关键字 基本数据类型 类型转换运算 输入输出数据 数组 第三章要点 运算符与表达式 语句概述 i ...