CF613E Puzzle Lover
题意
英文版题面
<style>
.input-output-copier {
font-size: 1.2rem;
float: right;
color: #888 !important;
cursor: pointer;
border: 1px solid rgb(185, 185, 185);
padding: 3px;
margin: 1px;
line-height: 1.1rem;
text-transform: none;
}
.input-output-copier:hover {
background-color: #def;
}
.test-explanation textarea {
width: 100%;
height: 1.5em;
}
</style>
2 seconds
256 megabytes
standard input
standard output
Oleg Petrov loves crossword puzzles and every Thursday he buys his favorite magazine with crosswords and other word puzzles. In the last magazine Oleg found a curious puzzle, and the magazine promised a valuable prize for it's solution. We give a formal description of the problem below.
The puzzle field consists of two rows, each row contains n cells. Each cell contains exactly one small English letter. You also are given a word w, which consists of k small English letters. A solution of the puzzle is a sequence of field cells c1, ..., ck, such that:
- For all i from 1 to k the letter written in the cell ci matches the letter wi;
- All the cells in the sequence are pairwise distinct;
- For all i from 1 to k - 1 cells ci and ci + 1 have a common side.
Oleg Petrov quickly found a solution for the puzzle. Now he wonders, how many distinct solutions are there for this puzzle. Oleg Petrov doesn't like too large numbers, so calculate the answer modulo 109 + 7.
Two solutions ci and c'i are considered distinct if the sequences of cells do not match in at least one position, that is there is such j in range from 1 to k, such that cj ≠ c'j.
The first two lines contain the state of the field for the puzzle. Each of these non-empty lines contains exactly n small English letters.
The next line is left empty.
The next line is non-empty and contains word w, consisting of small English letters.
The length of each line doesn't exceed 2 000.
Print a single integer — the number of distinct solutions for the puzzle modulo 109 + 7.
code
edoc
code
4
aaa
aaa
aa
14
</div>
阿狸的矩阵字符串匹配
Background
阿狸利用糖果稠密度分析仪得到了许多糖果,也终于成功地离开了基环内向树森林。刚走出森林的他却又落入了魔法陷阱之中。陷阱中有一个写满字母的矩阵,似乎只有找到合适的不重复路径,并在上面走一遍,才能解除陷阱。
可是合适的路径到底是什么呢?阿狸摇晃着自己的小脑袋,只感觉有水在流动,思考似乎成了奢侈的事,魔法陷阱中的 debuff 太强了。
Description
阿狸所看到的是一个 2×N 的矩阵 A,矩阵中每个格子都是一个小写字母。同时,你得到了长度为 M 一个字符串 S,你需要在矩阵中找到一条不重复路径(起点和终点任意),使得依次经过的字母连起来恰好是 S,求这样的路径有多少种。
你只能向上、向下、向左或向右走,不能斜着走或跳着走,也不能走出矩阵外或重复经过同一个点。两种路径不同,当且仅当至少有一个时刻所在的位置不同。
由于答案可能很大,你只要输出答案对 \(10^9+7\) 取模的值即可。
Input
第一行和第二行两行长度相同的字符串描述 2×N 的矩阵 A。
第三行一个空行。
第四行一个字符串,表示 S。
Output
一个正整数表示答案对 \(10^9+7\) 取模后的值。
Sample Input1
code
edoc
code
Sample Output1
4
Sample Input2
aaa
aaa
aa
Sample Output2
14
Sample Explanation

Data Limitation
对于测试点 1,保证 N≤5。
对于测试点 2~3,保证 N≤10。
对于测试点 4,保证 N≤20。
对于测试点 5~6,保证 N≤50。
对于测试点 7~8,保证 N≤300。
对于测试点 9~10,保证 N≤1,000。
对于测试点 11~12,保证 S 是一个全 a 字符串,且 A 也是全 a 的矩阵。
对于测试点 13~14,保证 S 是一个全 a 字符串。
对于测试点 15~16,保证 S 是一个形如 abbbb…的仅由一个字符 a 和若干字符 b 组成
的字符串。
对于 100%的数据,保证 \(1≤N,M≤2×10^3\)。
分析
\(2\times N\)的矩阵,总的折返次数不会超过2,分成左中右三部分分别处理。
可以发现不重复经过同一个格子的路径一定是形如这样的:

这个路径可以分成三段:
➢ 从 S 出发向左走一段再回来。
➢ 上下上下地往右走。
➢ 往右走一段再回到 T。
当然,S 和 T 的位置可以调换。
发现这个性质之后就可以直接 DP 了,左右两段可以用字符串 Hash 做,Left[i][j][k]表示匹配到第 i 行第 j 列的位置,匹配了 k 个字符的方案,那么 Left[i][j][k]的转移就是Left[i][j][k]=Left[i][j-1][k]+1;Right[i][j][k]表示匹配到第 i 行第 j 列的位置,匹配了 k 个字符的方案,那么 Right[i][j][k]的转移就是 Right[i][j][k]= Right[i][j+1][k]+1。接着中间的一段用简单的 DP 实现,设 F[i][j][k]表示在第 i 行第 j 列的位置,匹配到第 k 个字符的方案,把三段拼起来就好了。这题就这么简单,主要是细节处理上比较麻烦。
总复杂度是 \(O(N^2)\)。
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=2020,P1=1e9+7,P2=1e9+9;
int n,m,ans;
int tm1[N],tm2[N],tm1_[N],tm2_[N];
int f[2][N][N];
struct dd{ // double hash
int x,y;
bool operator==(co dd&n)co {return x==n.x&&y==n.y;}
}t1,t2,t3,t4;
struct cc{
char s[N];
int len,pre1[N],pre2[N],suf1[N],suf2[N];
void read(){
scanf("%s",s+1),len=strlen(s+1);
for(int i=1;i<=len;++i){
pre1[i]=((ll)tm1[i-1]*s[i]+pre1[i-1])%P1;
pre2[i]=((ll)tm2[i-1]*s[i]+pre2[i-1])%P2;
}
for(int i=len;i;--i){
suf1[i]=((ll)tm1[len-i]*s[i]+suf1[i+1])%P1;
suf2[i]=((ll)tm2[len-i]*s[i]+suf2[i+1])%P2;
}
}
dd get_hash(int l,int r){
dd t;
if(l<=r){
t.x=(ll)tm1_[l-1]*(pre1[r]+P1-pre1[l-1])%P1;
t.y=(ll)tm2_[l-1]*(pre2[r]+P2-pre2[l-1])%P2;
}
else{ // upside down
t.x=(ll)tm1_[len-l]*(suf1[r]+P1-suf1[l+1])%P1;
t.y=(ll)tm2_[len-l]*(suf2[r]+P2-suf2[l+1])%P2;
}
return t;
}
}s1,s2,w;
int ksm(int x,int y,int P){
int z=1;
for(;y;y>>=1,x=(ll)x*x%P)
if(y&1) z=(ll)z*x%P;
return z;
}
void init(){
int n=2000;
tm1[0]=tm2[0]=tm1_[0]=tm2_[0]=1;
for(int i=1;i<=n;++i) tm1[i]=31LL*tm1[i-1]%P1,tm2[i]=31LL*tm2[i-1]%P2;
tm1_[n]=ksm(tm1[n],P1-2,P1),tm2_[n]=ksm(tm2[n],P2-2,P2);
for(int i=n-1;i;--i) tm1_[i]=31LL*tm1_[i+1]%P1,tm2_[i]=31LL*tm2_[i+1]%P2;
s1.read(),s2.read(),w.read();
}
int main(){
// freopen("string.in","r",stdin),freopen("string.out","w",stdout);
init();
n=s1.len,m=w.len;
// forward
f[0][n+1][0]=f[1][n+1][0]=1; // right
for(int i=n;i;--i){
f[0][i][0]=f[1][i][0]=1;
for(int k=2;k+k<=m&&i+k-1<=n;++k){ // length starts with 2
t1=s1.get_hash(i,i+k-1),t2=s2.get_hash(i,i+k-1);
t3=w.get_hash(m,m-k+1),t4=w.get_hash(m-k-k+1,m-k);
if(t1==t3&&t2==t4) f[1][i][k+k]=1;
if(t2==t3&&t1==t4) f[0][i][k+k]=1;
}
}
for(int i=n;i;--i) // middle
for(int k=1;k<=m;++k){
if(s1.s[i]==w.s[m-k+1]) (f[0][i][k]+=f[0][i+1][k-1])%=P1;
if(s2.s[i]==w.s[m-k+1]) (f[1][i][k]+=f[1][i+1][k-1])%=P1;
if(k>1&&s1.s[i]==w.s[m-k+1]&&s2.s[i]==w.s[m-k+2]) (f[0][i][k]+=f[1][i+1][k-2])%=P1;
if(k>1&&s2.s[i]==w.s[m-k+1]&&s1.s[i]==w.s[m-k+2]) (f[1][i][k]+=f[0][i+1][k-2])%=P1;
}
for(int i=1;i<=n+1;++i){
(ans+=f[0][i][m])%=P1;
(ans+=f[1][i][m])%=P1;
for(int k=2;k+k<=m&&k<i;++k){ // left
t1=s1.get_hash(i-k,i-1),t2=s2.get_hash(i-k,i-1);
t3=w.get_hash(k,1),t4=w.get_hash(k+1,k+k);
if(t1==t3&&t2==t4) (ans+=f[1][i][m-k-k])%=P1;
if(t2==t3&&t1==t4) (ans+=f[0][i][m-k-k])%=P1;
}
}
if(m==1) return printf("%d\n",ans),0; // no inverse
memset(f,0,sizeof f);
f[0][n+1][0]=f[1][n+1][0]=1;
for(int i=n;i;--i){
f[0][i][0]=f[1][i][0]=1;
for(int k=2;k+k<m&&i+k-1<=n;++k){ // <m to avoid repeating
t1=s1.get_hash(i,i+k-1),t2=s2.get_hash(i,i+k-1);
t3=w.get_hash(1,k),t4=w.get_hash(k+k,k+1);
if(t1==t3&&t2==t4) f[1][i][k+k]=1;
if(t2==t3&&t1==t4) f[0][i][k+k]=1;
}
}
for(int i=n;i;--i)
for(int k=1;k<=m;++k){
if(s1.s[i]==w.s[k]) (f[0][i][k]+=f[0][i+1][k-1])%=P1;
if(s2.s[i]==w.s[k]) (f[1][i][k]+=f[1][i+1][k-1])%=P1;
if(m>2&&k>1&&s1.s[i]==w.s[k]&&s2.s[i]==w.s[k-1]) (f[0][i][k]+=f[1][i+1][k-2])%=P1; // m>2 to AR
if(m>2&&k>1&&s2.s[i]==w.s[k]&&s1.s[i]==w.s[k-1]) (f[1][i][k]+=f[0][i+1][k-2])%=P1;
}
for(int i=1;i<=n+1;++i){
(ans+=f[0][i][m])%=P1;
(ans+=f[1][i][m])%=P1;
for(int k=2;k+k<m&&k<i;++k){ // <m to AR
t1=s1.get_hash(i-k,i-1),t2=s2.get_hash(i-k,i-1);
t3=w.get_hash(m-k+1,m),t4=w.get_hash(m-k,m-k-k+1);
if(t1==t3&&t2==t4) (ans+=f[1][i][m-k-k])%=P1;
if(t2==t3&&t1==t4) (ans+=f[0][i][m-k-k])%=P1;
}
}
return printf("%d\n",ans),0;
}
CF613E Puzzle Lover的更多相关文章
- 题解 CF613E Puzzle Lover
解题思路 其实仔细观察我们可以发现路径一定是一个类似于下图的一个左括号之后中间随便反复曲折,然后右边在来一个右括号. 然后对于两个括号形状的东西其实是可以利用 Hash 来判等特殊处理的. 对于中间的 ...
- [Codeforces613E]Puzzle Lover
Problem 给你2*n的格子,每个格子有一个字母,从任意一点出发,不重复的经过上下左右,生成要求的字符串.问有几种不同的走法. Solution 分三段,左U型.中间.右U型. 分别枚举左边和右边 ...
- cf 613E - Puzzle Lover
Description 一个\(2*n\)的方格矩阵,每个格子里有一个字符 给定一个长度为\(m\)的字符串\(s\) 求在方格矩阵中,有多少种走法能走出字符串\(s\) 一种合法的走法定义为:从任意 ...
- 多校联训 DP 专题
[UR #20]跳蚤电话 将加边变为加点,方案数为 \((n-1)!\) 除以一个数,\(dp\) 每种方案要除的数之和即可. 点击查看代码 #include<bits/stdc++.h> ...
- cf Round 613
A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...
- codeforces613E
Puzzle Lover CodeForces - 613E Oleg Petrov loves crossword puzzles and every Thursday he buys his fa ...
- Puzzle 面向服务/切面(AOP/IOC)开发框架 For .Net
Puzzle 面向服务/切面AOP开发框架 For .Net AOP主要实现的目的是针对业务处理过程中的切面进行提取,它所面对的是处理过程中的某个步骤或阶段,以获得逻辑过程中各部分之间低耦合性的隔离效 ...
- HDU5456 Matches Puzzle Game(DP)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5456 Description As an exciting puzzle game for ...
- one recursive approach for 3, hdu 1016 (with an improved version) , permutations, N-Queens puzzle 分类: hdoj 2015-07-19 16:49 86人阅读 评论(0) 收藏
one recursive approach to solve hdu 1016, list all permutations, solve N-Queens puzzle. reference: t ...
随机推荐
- leetcode 刷题 数组类 Two Sum
---恢复内容开始--- Two Sum Given an array of integers ,find two numbers such that they add up to a specifi ...
- IIS设置上传文件大小限制
单位为字节. 500*1024*1024=524288000
- 生成器 Generators
function* quips(name) { yield "你好 " + name + "!"; yield "希望你能喜欢这篇介绍ES6的译文&q ...
- java套接字(socket)实例
客户端socket 流程: 1.连接远程主机 2.发送数据 3.接收数据 4.关闭流与socket连接 实例: import java.io.*; import java.net.Socket; im ...
- Centos7初始配置
配置 centos7 ip地址: vi /etc/sysconfig/network-scripts/ifcfg-ens33 BOOTPROTO=static ONBOOT=yes NM_CONTRO ...
- 第三节 java 函数的封装方法 以及 访问封装内容
从我们的选择排序和冒泡排序里我们可以看到有很多相同的代码, 我们 可以把这些相同的代码提取出来封装为方法:比如我们的判 断交换和遍历输出: 抽取1: public static void PanDua ...
- 一个在linxu自动切换ip的脚本
最近的爬虫是在linux下运行的,使用的是云立方的代理服务器,需要自动切换一下ip. #!/bin/bash# coding:utf8 aa="sources.list" #主流程 ...
- ubuntu 更改hostname, hosts后没有办法执行sudo 问题
由于主机名有重复的情况,所有需要更改主机名,遇到几个问题,主机名更改,重启系统以后不能执行sudo,另外也不知道root用户名密码.这个时候陷入了死循环. 网上搜集的办法,都是用sudo 命令去更改, ...
- Java语法基础学习DayThree
一.流程控制语句补充 1.switch语句 格式: switch(表达式) { case 值1: 语句体1; break; case 值2: 语句体2; break; ... default: 语句体 ...
- L319 Zigbee test coding- field test fail-base on EFR32MG1
1 Test coding Zigbee test of Tx power and frequency for every channel. Testing Procedure1) Power up ...