python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d
- Dataset transformations| 数据转换
- Combining estimators|组合学习器
- Feature extration|特征提取
- Preprocessing data|数据预处理
1 Dataset transformations
scikit-learn provides a library of transformers, which may clean (see Preprocessing data), reduce (see Unsupervised dimensionality reduction), expand (see Kernel Approximation) or generate (see Feature extraction) feature representations.
scikit-learn 提供了数据转换的模块,包括数据清理、降维、扩展和特征提取。
Like other estimators, these are represented by classes with fit method, which learns model parameters (e.g. mean and standard deviation for normalization) from a training set, and a transform method which applies this transformation model to unseen data. fit_transform may be more convenient and efficient for modelling and transforming the training data simultaneously.
scikit-learn模块有3种通用的方法:fit(X,y=None)、transform(X)、fit_transform(X)、inverse_transform(newX)。fit用来训练模型;transform在训练后用来降维;fit_transform先用训练模型,然后返回降维后的X;inverse_transform用来将降维后的数据转换成原始数据。
1.1 combining estimators
1.1.1 Pipeline:chaining estimators
Pipeline 模块是用来组合一系列估计器的。对固定的一系列操作非常便利,如:同时结合特征选择、数据标准化、分类。
- Usage|使用
代码:from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
#define estimators
#the arg is a list of (key,value) pairs,where the key is a string you want to give this step and value is an estimators object
estimators=[('reduce_dim',PCA()),('svm',SVC())]
#combine estimators
clf1=Pipeline(estimators)
clf2=make_pipeline(PCA(),SVC()) #use func make_pipeline() can do the same thing
print(clf1,'\n',clf2)输出:
Pipeline(steps=[('reduce_dim', PCA(copy=True, n_components=None, whiten=False)), ('svm', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))])
Pipeline(steps=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))])可以通过set_params()方法设置学习器的属性,参数形式为<estimator>_<parameter>
clf.set_params(svm__C=10)
上面的方法在网格搜索时很重要:
from sklearn.grid_search import GridSearchCV
params = dict(reduce_dim__n_components=[2, 5, 10],svm__C=[0.1, 10, 100])
grid_search = GridSearchCV(clf, param_grid=params)上面的例子相当于把pipeline生成的学习器作为一个普通的学习器,参数形式为<estimator>_<parameter>。
- Note|说明
1.可以使用dir()函数查看clf的所有属性和方法。例如step属性就是每个操作步骤的属性。
如>>> clf.steps[0]
('reduce_dim', PCA(copy=True, n_components=None, whiten=False))
2.调用pipeline生成的学习器的fit方法相当于依次调用其包含的所有学习器的方法,transform输入然后把结果扔向下一步骤。pipeline生成的学习器有着它包含的学习器的所有方法。如果最后一个学习器是分类,那么生成的学习器就是分类,如果最后一个是transform,那么生成的学习器就是transform,依次类推。
- Usage|使用
1.1.2 FeatureUnion: composite feature spaces
与pipeline不同的是FeatureUnion只组合transformer,它们也可以结合成更复杂的模型。
FeatureUnion combines several transformer objects into a new transformer that combines their output. AFeatureUnion takes a list of transformer objects. During fitting, each of these is fit to the data independently. For transforming data, the transformers are applied in parallel, and the sample vectors they output are concatenated end-to-end into larger vectors.
Usage|使用
代码:from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCA
from sklearn.pipeline import make_union
#define transformers
#the arg is a list of (key,value) pairs,where the key is a string you want to give this step and value is an transformer object
estimators=[('linear_pca)',PCA()),('Kernel_pca',KernelPCA())]
#combine transformers
clf1=FeatureUnion(estimators)
clf2=make_union(PCA(),KernelPCA())
print(clf1,'\n',clf2)
print(dir(clf1))输出:
FeatureUnion(n_jobs=1,
transformer_list=[('linear_pca)', PCA(copy=True, n_components=None, whiten=False)), ('Kernel_pca', KernelPCA(alpha=1.0, coef0=1, degree=3, eigen_solver='auto',
fit_inverse_transform=False, gamma=None, kernel='linear',
kernel_params=None, max_iter=None, n_components=None,
remove_zero_eig=False, tol=0))],
transformer_weights=None)
FeatureUnion(n_jobs=1,
transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('kernelpca', KernelPCA(alpha=1.0, coef0=1, degree=3, eigen_solver='auto',
fit_inverse_transform=False, gamma=None, kernel='linear',
kernel_params=None, max_iter=None, n_components=None,
remove_zero_eig=False, tol=0))],
transformer_weights=None)可以看出FeatureUnion的用法与pipeline一致
Note|说明
(A FeatureUnion has no way of checking whether two transformers might produce identical features. It only produces a union when the feature sets are disjoint, and making sure they are is the caller’s responsibility.)
Here is a example python source code:feature_stacker.py
1.2 Feature extraction
The sklearn.feature_extraction module can be used to extract features in a format supported by machine learning algorithms from datasets consisting of formats such as text and image.
skilearn.feature_extraction模块是用机器学习算法所支持的数据格式来提取数据,如将text和image信息转换成dataset。
Note:
Feature extraction(特征提取)与Feature selection(特征选择)不同,前者是用来将非数值的数据转换成数值的数据,后者是用机器学习的方法对特征进行学习(如PCA降维)。
1.2.1 Loading features from dicts
The class DictVectorizer can be used to convert feature arrays represented as lists of standard Python dict
objects to the NumPy/SciPy representation used by scikit-learn estimators.
Dictvectorizer类用来将python内置的dict类型转换成数值型的array。dict类型的好处是在存储稀疏数据时不用存储无用的值。代码:
measurements=[{'city': 'Dubai', 'temperature': 33.}
,{'city': 'London', 'temperature':12.}
,{'city':'San Fransisco','temperature':18.},]
from sklearn.feature_extraction import DictVectorizer
vec=DictVectorizer()
x=vec.fit_transform(measurements).toarray()
print(x)
print(vec.get_feature_names())输出:
[[ 1. 0. 0. 33.]
[ 0. 1. 0. 12.]
[ 0. 0. 1. 18.]]
['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']
[Finished in 0.8s]1.2.2 Feature hashing
1.2.3 Text feature extraction
1.2.4 Image feature extraction
以上三小节暂未考虑(设计到语言处理及图像处理)见官方文档
1.3 Preprogressing data
The sklearn.preprocessing
package provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators
sklearn.preprogressing模块提供了几种常见的数据转换,如标准化、归一化等。
1.3.1 Standardization, or mean removal and variance scaling
Standardization of datasets is a common requirement for many machine learning estimators implemented in the scikit; they might behave badly if the individual features do not more or less look like standard normally distributed data: Gaussian with zero mean and unit variance.
很多学习算法都要求事先对数据进行标准化,如果不是像标准正太分布一样0均值1方差就可能会有很差的表现。
- Usage|用法
代码:
from sklearn import preprocessing
import numpy as np
X = np.array([[1.,-1., 2.], [2.,0.,0.], [0.,1.,-1.]])
Y=X
Y_scaled = preprocessing.scale(Y)
y_mean=Y_scaled.mean(axis=0) #If 0, independently standardize each feature, otherwise (if 1) standardize each sample|axis=0 时求每个特征的均值,axis=1时求每个样本的均值
y_std=Y_scaled.std(axis=0)
print(Y_scaled)
scaler= preprocessing.StandardScaler().fit(Y)#用StandardScaler类也能完成同样的功能
print(scaler.transform(Y))输出:
[[ 0. -1.22474487 1.33630621]
[ 1.22474487 0. -0.26726124]
[-1.22474487 1.22474487 -1.06904497]]
[[ 0. -1.22474487 1.33630621]
[ 1.22474487 0. -0.26726124]
[-1.22474487 1.22474487 -1.06904497]]
[Finished in 1.4s]- Note|说明
1.func scale
2.class StandardScaler
3.StandardScaler 是一种Transformer方法,可以让pipeline来使用。
MinMaxScaler (min-max标准化[0,1])类和MaxAbsScaler([-1,1])类是另外两个标准化的方式,用法和StandardScaler类似。
4.处理稀疏数据时用MinMax和MaxAbs很合适
5.鲁棒的数据标准化方法(适用于离群点很多的数据处理):the median and the interquartile range often give better results
用中位数代替均值(使均值为0),用上四分位数-下四分位数代替方差(IQR为1?)。
1.3.2 Impution of missing values|缺失值的处理
- Usage
代码:import scipy.sparse as sp
from sklearn.preprocessing import Imputer
X=sp.csc_matrix([[1,2],[0,3],[7,6]])
imp=preprocessing.Imputer(missing_value=0,strategy='mean',axis=0)
imp.fit(X)
X_test=sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
print(X_test)
print(imp.transform(X_test))输出:
(1, 0) 6
(2, 0) 7
(0, 1) 2
(2, 1) 6
[[ 4. 2. ]
[ 6. 3.66666675]
[ 7. 6. ]]
[Finished in 0.6s] - Note
1.scipy.sparse是用来存储稀疏矩阵的
2.Imputer可以用来处理scipy.sparse稀疏矩阵
- Usage
1.3.3 Generating polynomial features
Usage
代码:import numpy as np
from sklearn.preprocessing import PolynomialFeatures
X=np.arange(6).reshape(3,2)
print(X)
poly=PolynomialFeatures(2)
print(poly.fit_transform(X))输出:
[[0 1]
[2 3]
[4 5]]
[[ 1. 0. 1. 0. 0. 1.]
[ 1. 2. 3. 4. 6. 9.]
[ 1. 4. 5. 16. 20. 25.]]
[Finished in 0.8s]Note
生成多项式特征用在多项式回归中以及多项式核方法中 。
1.3.4 Custom transformers
这是用来构造transform方法的函数
- Usage:
代码:import numpy as np
from sklearn.preprocessing import FunctionTransformer
transformer = FunctionTransformer(np.log1p)
x=np.array([[0,1],[2,3]])
print(transformer.transform(x))输出:
[[ 0. 0.69314718]
[ 1.09861229 1.38629436]]
[Finished in 0.8s] - Note
For a full code example that demonstrates using a FunctionTransformer to do custom feature selection, see Using FunctionTransformer to select columns
- Usage:
原文链接:http://www.jianshu.com/p/94516a58314d
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
python data analysis | python数据预处理(基于scikit-learn模块)的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 深入浅出数据分析 Head First Data Analysis Code 数据与代码
<深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下 ...
- 莫烦python教程学习笔记——数据预处理之normalization
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- spark 数据预处理 特征标准化 归一化模块
#We will also standardise our data as we have done so far when performing distance-based clustering. ...
- Python的工具包[1] -> pandas数据预处理 -> pandas 库及使用总结
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series ...
- python中常用的九种数据预处理方法分享
Spyder Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(St ...
- [Python]-pandas模块-机器学习Python入门《Python机器学习手册》-02-加载数据:加载文件
<Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...
- [Python]-sklearn模块-机器学习Python入门《Python机器学习手册》-02-加载数据:加载数据集
<Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
随机推荐
- Windows下虚拟机安装Mac OS X —– VM12安装Mac OS X 10.11
____________________________________________________________________________________________________ ...
- 查看Java JVM参数配置信息命令
查看Java JVM参数配置信息命令 java -XX:+PrintCommandLineFlags jvm运行时状态的参数,可以很快找出问题所在.现在把几个命令记录一下:1. jstat这个命令对于 ...
- 2017-2018-2 20155309 南皓芯 Exp5 MSF基础应用
实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实践,如ms08_067; 1.2 一个针对浏览器的攻击,如ms11_05 ...
- POJ 2718【permutation】
POJ 2718 问题描述: 给一串数,求划分后一个子集以某种排列构成一个数,余下数以某种排列构成另一个数,求这两个数最小的差,注意0开头的处理. 超时问题:一开始是得到一个数列的组合之后再从中间进行 ...
- C#编程的语法积累(一)
1.自动属性 之前的实现方式: private int id; public int Id { set {id = value;} get {return id;} } 现在可通过自动属性实现: pu ...
- KNN分类算法及python代码实现
KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习, ...
- 【Java】 剑指offer(50-1) 字符串中第一个只出现一次的字符
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 在字符串中找出第一个只出现一次的字符.如输入"abacc ...
- C# 反编译破解软件方法
我们有时在使用一些小工具软件时,会提示购买License(注册码之类的东东)后才能正常使用.在这里我们来尝试直接绕过License验证直接使用软件,实现简单的软件破解. 主要实现方式: 通过反编译工具 ...
- 为什么macos开机黑屏但是有声音?
一般使用时间久了,或者升级系统就会出现这个情况.完全关机,然后按开机键,再按command+option+R+P.不要松手,等重启几次,响几次(3次左右).然后松手等它自己重启即可. mac开机黑 ...
- iOS 技术篇:渐变色的简单实现方式
实现效果 //渐变设置 UIView *view = [[UIView alloc] initWithFrame:CGRectMake(,, [UIScreen mainScreen].bounds. ...