题目链接

\(Description\)

给定\(d\)张无向图,每张图都有\(n\)个点。一开始,在任何一张图中都没有任何边。

接下来有\(m\)次操作,每次操作会给出\(a,b,k\),意为在第\(k\)张图中的点\(a\)和点\(b\)之间添加一条无向边。

你需要在每次操作之后输出有序数对\((a,b)\)的个数,满足\(1\leq a,b\leq n\),且\(a\)点和\(b\)点在\(d\)张图中都连通。

\(d\leq 200,n\leq 5000,m\leq 1000000\)

\(Solution\)

我们需要知道的只是每对点之间是否连通,即在同一张图所属的连通块是否一样

于是我们对每个点在d张图中所属的连通块标号进行哈希,这个哈希要能快速删除一个标号 插入一个标号

如果有两个点哈希后的值相同,那么这两个点在d张图中都连通。于是我们再对这个哈希值做一遍哈希,来计算相同哈希值的个数

连边时用启发式合并,每次将size小的连通块全部修改fa,总复杂度\(O(dn\log n)\)

//75500kb	4628ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
typedef unsigned long long ull;
const int N=5005,D=205,M=1e6+5,mod=2e6;
const ull seed=769; int n,m,d,H[D][N],Enum,to[M<<1],nxt[M<<1],fa[D][N],sz[D][N],Ans;
ull hs_id[N],Pow[D];
struct Hash_Table
{
int top,h_H[mod+5],sk[mod],h_nxt[mod],cnt[mod];
ull val[mod];
void Init()
{
top=mod-5;
for(int i=1; i<=top; ++i) sk[i]=i;
}
void Insert(ull x)
{
int p=x%mod;
for(int i=h_H[p]; i; i=h_nxt[i])
if(val[i]==x) {Ans+=2*cnt[i]+1,++cnt[i]; return;}
++Ans;//(a,a)也算一对
int pos=sk[top--];
val[pos]=x, cnt[pos]=1, h_nxt[pos]=h_H[p], h_H[p]=pos;
}
void Delete(ull x)
{
int p=x%mod,pre=h_H[p];
if(val[pre]==x)
{
Ans-=2*cnt[pre]-1;
if(!--cnt[pre]) sk[++top]=pre, h_H[p]=h_nxt[pre];
}
else
for(int i=h_nxt[pre]; i; pre=i,i=h_nxt[i])
if(val[i]==x)
{
Ans-=2*cnt[i]-1;
if(!--cnt[i]) sk[++top]=i, h_nxt[pre]=h_nxt[i];
break;
}
}
}hs2; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int k){
to[++Enum]=v, nxt[Enum]=H[k][u], H[k][u]=Enum;
}
void DFS(int x,int f,int k,int anc)
{
hs2.Delete(hs_id[x]);
hs_id[x]-=Pow[k]*fa[k][x];//fa就是belong了
fa[k][x]=anc;
hs_id[x]+=Pow[k]*anc;
hs2.Insert(hs_id[x]);
for(int i=H[k][x]; i; i=nxt[i])
if(to[i]!=f) DFS(to[i],x,k,anc);
}
void Union(int u,int v,int k)
{
if(fa[k][u]==fa[k][v]) return;
if(sz[k][fa[k][u]]<sz[k][fa[k][v]]) std::swap(u,v);
sz[k][fa[k][u]]+=sz[k][fa[k][v]];
DFS(v,u,k,fa[k][u]);
AddEdge(u,v,k),AddEdge(v,u,k);
} int main()
{
d=read(),n=read(),m=read();
Pow[0]=1;
for(int i=1; i<D; ++i) Pow[i]=Pow[i-1]*seed;
hs2.Init();
for(int i=1; i<=n; hs2.Insert(hs_id[i++]))
for(int j=1; j<=d; ++j)
fa[j][i]=i, sz[j][i]=1, hs_id[i]+=Pow[j]*i;//Hash = (∑s[i]seed^i) mod 2^{31}
int a,b,k;
while(m--)
a=read(),b=read(),k=read(),Union(a,b,k),printf("%d\n",Ans);
return 0;
}

BZOJ.4298.[ONTAK2015]Bajtocja(Hash 启发式合并)的更多相关文章

  1. bzoj 4298 [ONTAK2015]Bajtocja——哈希+启发式合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4298 题面: 给定d张无向图,每张图都有n个点.一开始,在任何一张图中都没有任何边.接下来有 ...

  2. @bzoj - 4298@ [ONTAK2015]Bajtocja

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定d张无向图,每张图都有n个点.一开始,在任何一张图中都没有任 ...

  3. BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )

    枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...

  4. BZOJ 3545: [ONTAK2010]Peaks( BST + 启发式合并 + 并查集 )

    这道题很好想, 离线, 按询问的x排序从小到大, 然后用并查集维护连通性, 用平衡树维护连通块的山的权值, 合并就用启发式合并.时间复杂度的话, 排序是O(mlogm + qlogq), 启发式合并是 ...

  5. BZOJ 2888 资源运输(启发式合并LCT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2888 [题目大意] 不断加边,问每个连通块的重心到其它点的距离和的和 [题解] 启发式 ...

  6. BZOJ 3545: [ONTAK2010]Peaks [Splay启发式合并]

    3545: [ONTAK2010]Peaks 题意:带权图,多组询问与一个点通过边权\(\le x\)的边连通的点中点权k大值 又读错题了,输出点一直WA,问的是点权啊 本题加强版强制在线了,那这道题 ...

  7. bzoj 1483: [HNOI2009]梦幻布丁 启发式合并vector

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description N个 ...

  8. BZOJ 1483 梦幻布丁(链表+启发式合并)

    给出一个长度为n的序列.支持两种操作: 1.把全部值为x的修改成y.2.询问序列有多少连续段. 我们可以对于每个值建立一个链表.对于操作1,则可以将两个链表合并. 对于操作2,只需要在每次合并链表的时 ...

  9. BZOJ 2733: [HNOI2012]永无乡 启发式合并treap

    2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

随机推荐

  1. 嵌入式系统C编程之错误处理

    前言 本文主要总结嵌入式系统C语言编程中,主要的错误处理方式.文中涉及的代码运行环境如下: 一  错误概念 1.1 错误分类 从严重性而言,程序错误可分为致命性和非致命性两类.对于致命性错误,无法执行 ...

  2. Linux命令学习总结:date命令【转】

    本文转自:http://www.cnblogs.com/kerrycode/p/3427617.html 命令简介: date 根据给定格式显示日期或设置系统日期时间.print or set the ...

  3. 转载:(Mac)在bash和zsh配置环境变量path的几种方法

    参考文献 老习惯,列出本文参考或引用或转载的文档和博客,致以崇高的敬意,感兴趣的可以去看看 1.http://postgresapp.com/ 2.http://postgresapp.com/doc ...

  4. saltstack自动化运维系列12配置管理安装redis-3.2.8

    一.准备redis自动化配置的文件(即安装一遍redis,然后获取相关文件和配置在salt中执行上线) 1.源码安装redis3.2.8并注册为系统服务 安装依赖yum install -y tcl ...

  5. cacti系列(一)之cacti的安装及配置监控mysql服务

    简介 Cacti是通过 snmpget来获取数据,使用 RRDtool绘画图形,而且你完全可以不需要了解RRDtool复杂的参数.它提供了非常强大的数据和用户管理功能,可以指定每一个用户能查看树状结构 ...

  6. 大数据处理算法--Bloom Filter布隆过滤

    1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很 ...

  7. 2017-05~06 温故而知新--NodeJs书摘(一)

    前言: 毕业到入职腾讯已经差不多一年的时光了,接触了很多项目,也积累了很多实践经验,在处理问题的方式方法上有很大的提升.随着时间的增加,愈加发现基础知识的重要性,很多开发过程中遇到的问题都是由最基础的 ...

  8. bzoj 1112 poi 2008 砖块

    这滞胀题调了两天了... 好愚蠢的错误啊... 其实这道题思维比较简单,就是利用treap进行维护(有人说线段树好写,表示treap真心很模板) 就是枚举所有长度为k的区间,查出中位数,计算代价即可. ...

  9. spring-boot集成spring-data-jpa

    参考这个就行, http://blog.csdn.net/wazz753/article/details/72472411 ps:集成过程中pom文件,我加入的内容如下,两个都需要,实体类记得加注解和 ...

  10. stl 常用代码

    CString类型的replace ; while((pos = it->m_strFile.find(_T("%UC_INSTALL_ROOT%\\"), pos)) != ...