题目链接

/*
题意:有m个区间,问最少要多少个区间能覆盖[1,n]
注:区间要按原区间的顺序,不能用排序贪心做 设dp[i]表示最右端端点为i时的最小值
dp[e[i]]=min{dp[s[i]]~dp[e[i]-1]}+1
注意修改只需要修改右端点,不需要修改一段
所以线段树查询区间最小值即可
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define gc() getchar()
//#define gc() (TT==SS &&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),TT==SS)?EOF:*SS++)
const int N=5e4+5,MAXIN=1e7,INF=0x3f3f3f3f; int n,m,f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Seg_Tree
{
int tot;
struct Node
{
int l,r,val,ls,rs;
}node[N<<1];
inline void PushUp(int rt)
{
node[rt].val=std::min(node[node[rt].ls].val,node[node[rt].rs].val);
}
void Build(int l,int r)
{
int p=tot++;
node[p].l=l, node[p].r=r;
if(l==r){ node[p].ls=node[p].rs=-1,node[p].val=f[l]; return;}
int m=l+r>>1;
node[p].ls=tot, Build(l,m);
node[p].rs=tot, Build(m+1,r);
PushUp(p);
// printf("%d:l:%d r:%d val:%d\n",p,l,r,node[p].val);
}
void Modify(int rt,int pos,int v)
{
if(node[rt].l==node[rt].r)
{
node[rt].val=v; return;
}
int m=node[rt].l+node[rt].r>>1;
if(pos<=m) Modify(node[rt].ls,pos,v);
else Modify(node[rt].rs,pos,v);
PushUp(rt);
}
int Query(int rt,int L,int R)
{
if(L<=node[rt].l && node[rt].r<=R) return node[rt].val;
int m=node[rt].l+node[rt].r>>1;
if(L<=m)
if(m<R) return std::min(Query(node[rt].ls,L,R),Query(node[rt].rs,L,R));
else return Query(node[rt].ls,L,R);
else if(m<R) return Query(node[rt].rs,L,R);
}
}t; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
} int main()
{
n=read(),m=read();
memset(f,0x3f,sizeof f);
f[1]=0;
t.Build(1,n);
int l,r,tmp;
while(m--)
{
l=read(),r=read();
if(f[r]>(tmp=t.Query(0,l,r-1)+1))
f[r]=tmp, t.Modify(0,r,tmp);
}
printf("%d",f[n]); return 0;
}

POJ.1769.Minimizing maximizer(线段树 DP)的更多相关文章

  1. poj 1769 Minimizing maximizer 线段树维护dp

    题目链接 给出m个区间, 按区间给出的顺序, 求出覆盖$ [1, n] $ 至少需要多少个区间. 如果先给出[10, 20], 在给出[1, 10], 那么相当于[10, 20]这一段没有被覆盖. 令 ...

  2. POJ 1769 Minimizing maximizer(DP+zkw线段树)

    [题目链接] http://poj.org/problem?id=1769 [题目大意] 给出一些排序器,能够将区间li到ri进行排序,排序器按一定顺序摆放 问在排序器顺序不变的情况下,一定能够将最大 ...

  3. POJ 1769 Minimizing maximizer (线段树优化dp)

    dp[i = 前i中sorter][j = 将min移动到j位置] = 最短的sorter序列. 对于sorteri只会更新它右边端点r的位置,因此可以把数组改成一维的,dp[r] = min(dp[ ...

  4. POJ 2750 Potted Flower(线段树+dp)

    题目链接 虽然是看的别的人思路,但是做出来还是挺高兴的. 首先求环上最大字段和,而且不能是含有全部元素.本来我的想法是n个元素变为2*n个元素那样做的,这样并不好弄.实际可以求出最小值,总和-最小,就 ...

  5. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  6. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  7. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  8. POJ 3415 Max Sum of Max-K-sub-sequence (线段树+dp思想)

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. lightoj1085 线段树+dp

    //Accepted 7552 KB 844 ms //dp[i]=sum(dp[j])+1 j<i && a[j]<a[i] //可以用线段树求所用小于a[i]的dp[j ...

随机推荐

  1. python内置模块之unittest测试(五)

    系列文章 python模块分析之random(一) python模块分析之hashlib加密(二) python模块分析之typing(三) python模块分析之logging日志(四) pytho ...

  2. ORB feature(O for orientation)

    参考链接:http://blog.csdn.net/yang843061497/article/details/38553765 绪论 假如我有2张美女图片,我想确认这2张图片中美女是否是同一个人.这 ...

  3. linux 串口0x03,0x13的问题【转】

    linux 串口0x03,0x13的问题 本人最近在调linux串口的时候,发现其他数据接收正常,但是0x13怎么也接收不到,后面发现了这篇文章,两天的bug终于解决了,原来是linux底层uart配 ...

  4. DataSnap ClientdataSet 三层中主从表的操作

    非原创  摘自:http://hi.baidu.com/yagzh2000/blog/item/fc69df2cb9845de78b139946.html三层中主从表的操作(删除.新增.修改)一定要在 ...

  5. saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy的Keepalived

    saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy的Keepalived 安装配置Keepalived 1.编写功能模块 #创建keepalived目录# mkdir -p ...

  6. java模拟form上传数据

    Java模拟form表单上传 查看form表单提交的http请求为 import java.io.*; import java.net.*; public class FileUpload { /** ...

  7. mysql语句判断是否存在记录,没有则插入新纪录否则不执行

    1 前言 由于项目需要,当某个表如果有记录,就不执行加入语句,否则加入新纪录(测试数据).思路是:判断表的记录是否为空,然后再决定是否插入 2 代码 DROP PROCEDURE IF EXISTS ...

  8. mysql5.7安装教程图解

    启动安装包: 左边是你电脑上可以连接到mysql的软件,比如Visual Studio,Eclipse,PyCharm等,中间是需求的版本或者额外组件,右边是状态. 选择一个选项,然后点击下面的che ...

  9. 基于vue的UI框架集锦

    前端框架百花齐放.争奇斗艳,令人眼花缭乱.大神们一言不合就整一个框架出来,另小白们无所适从.下面罗列了一些比较优秀的UI框架,Star多的大都是老牌劲旅,Star少的许多是后起之秀. (1)Eleme ...

  10. SeaJS入门教程系列之SeaJS介绍(一)

    前言SeaJS是一个遵循CommonJS规范的JavaScript模块加载框架,可以实现JavaScript的模块化开发及加载机制.与jQuery等JavaScript框架不同,SeaJS不会扩展封装 ...