1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO
 
题意:
本题是1066题和1110题的综合,通过给定的插入序列,首先需要正确构建AVL树;其次判断该树是否为完全二叉树。
 
思路:
略。看1066题和1110题的题解即可。
 
代码:
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;

struct Node{
    int val;
    int height;//以该结点为根结点的子树高度
    Node *lchild,*rchild;
    Node(),lchild(nullptr),rchild(nullptr){}
};

int n;//结点个数

int getHeight(Node* pNode)
{
    ;
    else return pNode->height;
}

int getBalancedFactor(Node* pNode)
{
    return getHeight(pNode->lchild)-getHeight(pNode->rchild);
}

void updateHeight(Node* pNode)
{
    pNode->height=max(getHeight(pNode->lchild),getHeight(pNode->rchild))+;
}

void leftRotation(Node* &pNode)
{
    Node* temp=pNode->rchild;
    pNode->rchild=temp->lchild;
    temp->lchild=pNode;
    updateHeight(pNode);
    updateHeight(temp);
    pNode=temp;
}

void rightRotation(Node* &pNode)
{
    Node* temp=pNode->lchild;
    pNode->lchild=temp->rchild;
    temp->rchild=pNode;
    updateHeight(pNode);
    updateHeight(temp);
    pNode=temp;
}

void insert(Node* &root,int val)
{
    if(root==nullptr){
        root=new Node(val);
        return;
    }
    if(val < root->val){
        insert(root->lchild,val);
        updateHeight(root);
        ){
            ){//LL型
                rightRotation(root);
            }){//LR型
                leftRotation(root->lchild);
                rightRotation(root);
            }
        }
    }else{
        insert(root->rchild,val);
        updateHeight(root);
        ){
            ){//RR型
                leftRotation(root);
            }){//RL型
                rightRotation(root->rchild);
                leftRotation(root);
            }
        }
    }
}

//层序遍历,并判断是否为完全二叉树
bool levelOrderTraversal(Node* root)
{
    ;
    bool flag=true;
    queue<Node*> q;
    q.push(root);
    while(!q.empty()){
        Node* temp=q.front();
        q.pop();
        if(temp){
            printf("%d",temp->val);
            cnt++;
            if(cnt<n) printf(" ");
            q.push(temp->lchild);
            q.push(temp->rchild);
        }else{
            if(cnt<n) flag=false;
        }
    }
    return flag;
}

int main()
{
    int val;
    Node* root=nullptr;
    scanf("%d",&n);
    ;i<n;i++){
        scanf("%d",&val);
        insert(root,val);
    }
    bool flag=levelOrderTraversal(root);
    printf("\n%s",flag?"YES":"NO");
    ;
}

1123 Is It a Complete AVL Tree的更多相关文章

  1. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  2. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  3. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  5. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  7. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

  8. PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  9. PAT 1123. Is It a Complete AVL Tree (30)

    AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...

随机推荐

  1. 【python常见面试题】之python 中对list去重的多种方法

    在python相关职位的面试过程中,会对列表list的去重进行考察.(注意有时会要求保证去重的顺序性) 1.直观方法 li=[1,2,3,4,5,1,2,3] new_li=[] for i in l ...

  2. resizable可调整尺寸组件

    Resizable 可调整尺寸不依赖于其他组件 1.用法:通过标记创建可调整尺寸(resizable)对象 <div class="easyui-resizable" sty ...

  3. C++面向对象高级编程(四)基础篇

    技术在于交流.沟通,转载请注明出处并保持作品的完整性. 一.Static 二.模板类和模板函数 三.namespace 一.Static 静态成员是“类级别”的,也就是它和类的地位等同,而普通成员是“ ...

  4. 辛星笔记——VIM学习篇(推荐阅读)

    转载自:辛星和您一起学vim脚本第一节 如本文侵犯了您的版权,请联系windeal12@qq.com 这几天在网上看了辛星的一些vim教程博文,觉得很有收获,也很实用,适合入门,所以转载其中一篇留个网 ...

  5. java.io.IOException: Unable to establish loopback connection

    1.错误描述 Starting preview server on port 8080 Modules: HTML5 (/HTML5) 2017-06-17 11:13:04.823:INFO::ma ...

  6. 细说并发4:Java 阻塞队列源码分析(上)

    上篇文章 趣谈并发3:线程池的使用与执行流程 中我们了解到,线程池中需要使用阻塞队列来保存待执行的任务.这篇文章我们来详细了解下 Java 中的阻塞队列究竟是什么. 读完你将了解: 什么是阻塞队列 七 ...

  7. memcached asp.net

    下载文件 memcached 1.解压缩文件到e:\memcached 2.命令行输入 e:\memcached\memcached.exe -d install' 3.命令行输入 e:\memcac ...

  8. iOS开发错误汇总

    人非圣贤孰能无过 dyld: Library not loaded: /... 过而能改善莫大焉 iOS下dyld: Library not loaded: 错误信息解决方案

  9. scrollTop兼容处理

    使用jQuery2.0以下版本的scrollTop()函数来设置当然兼容性当然很好,但有时需要为滚动设置滑动效果.比如,使用animate函数,这里需要做些兼容性处理: 实例:http://sandb ...

  10. IOI2002 POJ1054 The Troublesome Frog 讨厌的青蛙 (离散化+剪枝)

    Description In Korea, the naughtiness of the cheonggaeguri, a small frog, is legendary. This is a we ...