题目大意:将n个点,m条边的无向图变成强连通图,最少需要加几条有向边。

题目分析:所谓强连通,就是无向图中任意两点可互达。找出所有的边连通分量,每一个边连通分量都是强连通的,那么缩点得到bcc图,只需考虑在bcc图上加有向边。如果,bcc图是由v个孤立的点,0条边构成的,则最少需要添加v条(将v个点首尾顺次连起来构成一条圈)有向边。如果由v个点,k条边构成,则对于每一个顶点,如果度数大于2,就不用给它加任何边,因为它一定能会在圈中;如果度数为1,则为这个点添只加一条边即可;如果度数为0,也就是孤立点,要想连在圈中,必须添加两条边。最后,考虑到重复,把累加和除以2后向上取整便是答案。

找边双连通分量套模板。。。标记每一个桥,再深搜一次,过程中不经过桥。

代码如下:

# include<iostream>
# include<cstdio>
# include<vector>
# include<stack>
# include<cstring>
# include<algorithm>
using namespace std;
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a)) struct Edge
{
int to,flag;
Edge(int v,int f):to(v),flag(f){}
};
const int N=1005;
int n,m,bcc_cnt,dfs_clock,low[N],pre[N],bccno[N],du[N];
vector<int>G[N];
vector<Edge>e; void dfs(int u,int fa)
{
low[u]=pre[u]=++dfs_clock;
REP(i,0,G[u].size()){
int v=e[G[u][i]].to;
if(!pre[v]){
dfs(v,u);
low[u]=min(low[v],low[u]);
if(low[v]>low[u])
e[G[u][i]].flag=e[G[u][i]^1].flag=1;
}else if(pre[v]<pre[u]&&v!=fa)
low[u]=min(low[u],pre[v]);
}
} void dfs1(int u)
{
bccno[u]=bcc_cnt;
REP(i,0,G[u].size()){
int v=e[G[u][i]].to;
if(!bccno[v]&&!e[G[u][i]].flag) dfs1(v);
}
} void findBcc()
{
CL(bccno,0);
CL(pre,0);
dfs_clock=bcc_cnt=0;
REP(i,0,n) if(!pre[i]) dfs(i,-1);
REP(i,0,n) if(!bccno[i]){
++bcc_cnt;
dfs1(i);
}
} int main()
{
int a,b;
while(~scanf("%d%d",&n,&m))
{
e.clear();
REP(i,0,n) G[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
--a,--b;
e.push_back(Edge(b,0));
e.push_back(Edge(a,0));
G[a].push_back(e.size()-2);
G[b].push_back(e.size()-1);
}
findBcc();
if(bcc_cnt==1){
printf("0\n");
continue;
}
CL(du,0);
REP(u,0,n){
REP(i,0,G[u].size()){
int v=e[G[u][i]].to;
if(bccno[u]!=bccno[v]) ++du[bccno[v]];
}
}
int ans=0;
REP(i,1,bcc_cnt+1){
if(du[i]==1) ++ans;
if(du[i]==0) ans+=2;
}
printf("%d\n",(ans+1)/2);
}
return 0;
}

  

UVA-10972 RevolC FaeLoN (边双连通+缩点)的更多相关文章

  1. UVA 10972 - RevolC FaeLoN(边-双连通分量)

    UVA 10972 - RevolC FaeLoN option=com_onlinejudge&Itemid=8&page=show_problem&category=547 ...

  2. UVA 10972 RevolC FaeLoN(边-双连通+缩点)

    很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...

  3. uva 10972 RevolC FaeLoN cdoj 方老师和农场

    //自己写的第一发tarjan 解:先进行双连通分解并缩点,分解后一定是一颗树,设叶节点个数为n那么答案就是(n+1)/2 关于双连通分量求解:在跑tarjan时判断每个点连向父节点的边是否是桥,如果 ...

  4. UVA - 10972 RevolC FaeLoN

    一道特别好的题qwq. 题目大意就是给你一个无向图,让你把边定向之后再加一些边使得这个图强连通,求最少需要加多少边. 一开始毫无头绪23333,数据范围让人摸不着头脑..... 然后开始画图,,,发现 ...

  5. UVA 10972 RevolC FaeLoN(边连通分量)

    坑了我一天的题目..跑了20ms挂了,就知道有个小毛病= = 无向图转有向图判强连通. 首先要知道什么样的无向图可以转化为强连通图?连通分量(环)自然是可以的:那么扩大范围(存在割顶),发现点连通分量 ...

  6. hdu 4612 Warm up 双连通缩点+树的直径

    首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...

  7. 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H

    http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...

  8. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  9. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  10. poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】

    Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10141   Accepted: 503 ...

随机推荐

  1. Vim step by step

    @1: VIM中非常迷人的功能: D------->从当前位置开始删除,直到当前行结束 cw------->修改游标所在的单词,修改范围从游标位置到单词结尾. 一个替换一个用r,一个替换多 ...

  2. 5.MySQL必知必会之过滤数据-WHERE

    本章将讲授如何使用SELECT语句的WHERE子句指定搜索条件. 1.使用WHERE子句 数据库表一般包含大量的数据,很少需要检索表中所有行.通常只 会根据特定操作或报告的需要提取表数据的子集.只检索 ...

  3. XDU 1098 (欧拉函数模板题)

    原题链接,点击此处 欧拉函数:φ(N)表示对一个正整数N,欧拉函数是小于N且与N互质的数的个数 通式:φ(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/p ...

  4. 31. Next Permutation (下一个全排列)

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  5. 裁剪TOGAF进行产品架构开发

    http://ea.zhoujingen.cn/56.html . 有人和我说“周老师,我的企业条件不适合,学习企业架构没用.” 如果等公司让我用企业架构,估计会比我自己开始晚七八年.我们学习任何内容 ...

  6. 2 安装企业wiki:confluence

    jira sudo /etc/init.d/jira start 启动 jiarsudo /etc/init.d/jira stop 停止 jiar 方法一:$ sudo /etc/init.d/co ...

  7. Decker容器使用

    Docker 客户端 我们可以直接输入 docker 命令来查看到 Docker 客户端的所有命令选项 root@ranxf:/home/ranxf# docker Usage: docker COM ...

  8. sparkSQL整体实现框架

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://9269309.blog.51cto.com/9259309/1845525 这篇 ...

  9. 20145307第三次JAVA学习实验报告

    20145307 <Java程序设计>第三次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1453 指导教师:娄嘉鹏 实验日期:2016.04.22 实验 ...

  10. PostgreSQL 递归查询 (转)

    数据库中的数据存在父子关系(单继承,每一条记录只有一个父亲).  如果要查询一条记录以及他的所有子记录,或者要查询一条记录以及他的所有父记录.那么递归查询就再合适不过了.可以简化复杂的SQL语句 现在 ...