线性方程组:

\(i:1-n\)
\(j:1-m\)
\({\begin{cases}a_{11}x_1+a_{12}x_2+a_{13}x_3+\cdots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+a_{23}x_3+\cdots+a_{2n}x_n=b_2\\~~~~\vdots~~~~~~~~~~~~\vdots~~~~~~~~~~~~\vdots~~~~~~~~~~\vdots~~~~~~~~~~\vdots~~~~~~~~~\vdots\\a_{m1}x_1+a_{m2}x_2+a_{m3}x_3+\cdots+a_{mn}x_n=b_m\end{cases}}\)
系数矩阵:方程组各项系数\((a_{ij})\)按顺序组成的矩阵\(A\)。
未知数矩阵:未知数\(x_i\)组成的列向量\(X\)。
常数项矩阵:等式右侧常数\((b_j)\)组成的矩阵\(B\)。
增广矩阵:系数矩阵最右侧补充一个常数项矩阵。
线性方程组与矩阵的一个关系:
设两个线性变换:
\({\begin{cases}y_1=a_{11}x_1+a_{12}x_2+a_{13}x_3\\y_2=a_{21}x_1+a_{22}x_2+a_{23}x_3\end{cases}}\)
\({\begin{cases}x_1=b_{11}t_1+b_{12}t_2\\x_2=b_{21}t_1+b_{22}t_2\\x_3=b_{31}t_1+b_{32}t_2\end{cases}}\)
那么\(y,t\)之间的关系的系数矩阵是
\(\left(\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\end{matrix}\right)\times\left(\begin{matrix}b_{11}&b_{12}\\b_{21}&b_{22}\\b_{31}&b_{32}\end{matrix}\right)=\cdots\)

simplex:

\(1.\)建立系数矩阵,辅助松弛变量略过。
\(2.\)寻找\(b_l<0\)随机取,若无则\(return\),寻找\(a_{l,e}<0\)随机取,若无则无解,\(pivot(l,e)\),重复。
\(3.\)找\(max(c_e)\),小于0则结束,否则找\(min(b_l/a_{l,e})\),等于\(INF\)则解为\(INF\),然后\(pivot(l,e)\)。
注意:
\(1.ans+=c_e\times b_l\),\(c_e\)为变动前,\(b_l\)为变动后。
\(2.a_{l,e}\)变为倒数,\(e\)列其他为其相反数\(/a_{l,e}\)(原)。
\(3.\)其余相当于把\(a_{l,e}\)变成\(1\),\(e\)列其他变为\(0\)所做的高斯消元操作。
如何输出解:
\(1.i=1-n,id[i]=i\)
\(2.pivot(l,e)\)时\(swap(id[l+n],id[e])\)(不断记当前列和省略列是哪个变量)。
\(3.x_{id_{n+i}}=b_i\)所有的基变量的取值就是\(b\),非基变量的取值是\(0\)。

克拉默法则与线性方程组求解:

由\(AX=B\),得\(X=A^{-1}B\)

线性代数与simplex的更多相关文章

  1. 单纯形方法(Simplex Method)

    最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M算法和分段法的仿真,拿出来与大家分享一下.单纯形方法是求解线性规划问题的一种基本方法. 线性规划就是在一系列 ...

  2. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  3. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  4. 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍

    调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...

  5. 【BZOJ】【TJOI2015】线性代数

    网络流/最小割/最大权闭合图 2333好开心,除了一开始把$500^2$算成25000……导致数组没开够RE了一发,可以算是一次AC~ 咳咳还是回归正题来说题解吧: 一拿到这道题,我就想:这是什么鬼玩 ...

  6. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  7. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  8. 线性代数-矩阵-【1】矩阵汇总 C和C++的实现

    矩阵的知识点之多足以写成一本线性代数. 在C++中,我们把矩阵封装成类.. 程序清单: Matrix.h//未完待续 #ifndef _MATRIX_H #define _MATRIX_H #incl ...

  9. 线性代数-矩阵-【2】矩阵生成 C和C++实现

    矩阵的知识点之多足以写成一本线性代数. 所以我们把矩阵的运算封装成矩阵类.以C++为主进行详解. 点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Lia ...

随机推荐

  1. UVa 1220 Party at Hali-Bula (树形DP,最大独立集)

    题意:公司有 n 个人形成一个树形结构,除了老板都有唯一的一个直系上司,要求选尽量多的人,但不能同时选一人上和他的直系上司,问最多能选多少人,并且是不是唯一的方案. 析:这个题几乎就是树的最大的独立集 ...

  2. 编写高质量代码改善C#程序的157个建议——建议113:声明变量前考虑最大值

    建议113:声明变量前考虑最大值 假设正在开发一个工资系统,其中一个模块负责处理加薪.代码如下: static void Main(string[] args) { ; salary = (); Co ...

  3. CSS中的一些内容总结

    一.选择器 1.选择器的分组:一个Style可以对多个选择器生效,只用在不同的选择器中间加入逗号即可.如: h1,h2,h3,h4,h5,h6 { color: green; } PS:CSS规定,所 ...

  4. jmeter-性能监控(InfluxDB+Grafana)

    测试结果实时监控:jmeter+influxdb+grafana InfluxDB:存储实时数据的DB Grafana:DB中存储的实时数据可以在浏览器查看 --------------------- ...

  5. Raspberry Pi 3 安装 Lazarus 1.6.2(2017-02-09更新)

    Raspberry Pi3 Lazarus 1.6.2 安装步骤如下: 安装环境:Raspbian Jessie, RPi3 1.安装subversion和unzip Sudo Apt-get upd ...

  6. Retrofit+Rxjava observable转javabean失败

    报错提示: Caused by: java.lang.IllegalArgumentException: Unable to create call adapter for io.reactivex. ...

  7. VS2010下安装OpenCV2.4.3

    本文记录Windows 7 X86 SP1操作系统环境下,安装与配置OpenCV2.4.3的详细步骤.前置需求:已安装有VS2010. 下载并安装OpenCV 从http://www.opencv.o ...

  8. linux权限及目录

    [-][rwx][r-x][r--] r:4 - 读  w:2 - 写  x:1 - 执行 1:代表文件类型 2:代表文件所有者的权限 3:代表文件所在组的权限 4:代表其他用户的权限 chgrp:修 ...

  9. sql字段操作

    --删除第一位 substring(ftpMobile,2,len(ftpMobile)-1) --检查是否是数字 ISNUMERIC(ftpMobile) =0  含数字以外字符 ISNUMERIC ...

  10. .net core i上 K8S(七).netcore程序的服务发现

    上一章我们分享了k8s的网络代理模式,今天我们来分享一下k8s中的服务发现. 1.环境变量模式的服务发现 k8s默认为我们提供了通过环境变量来实现服务发现的功能,前提是 1.需要service在pod ...