[POJ 1236][IOI 1996]Network of Schools
Description
in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output
Sample Input
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output
1
2
Source
题目大意:给定一个有向图,求至少要有多少个点, 才干从这些点出发到达全部点;至少要加入多少条边,才干从随意一点出发到达全部点
首先要推出一个定理:在DAG中,对于全部入度不为0的点,一定有入度为0的点可达(由于从入度为0的点倒着走,一定能走到入度不为0的点)
于是此题可用tarjan缩点,求有多少个入度为0的点,这就是第一个问题的答案。
第二个问题的答案为入度为0的点和出度为0的点的最小值。证明比較难。略。
对于这道题,由于仅仅要求入度和出度为0的点,故仅仅需在tarjan过程中记录每一个点归属哪个强连通分量。然后统计输出就可以
#include <iostream>
#include <stdio.h>
#include <string.h> #define MAXE 500
#define MAXV 3000 using namespace std; int N; struct edge
{
int u,v,next;
}edges[MAXV]; int head[MAXE],nCount=0;
int dfn[MAXE],low[MAXE],index=0;
int belong[MAXE],tot=0; //belong[i]=i点所属的强连通分量,tot=强连通分量总数
bool inStack[MAXE];
int stack[MAXE*4],top=0;
bool map[MAXE][MAXE];
int inDegree[MAXE],outDegree[MAXE],inZero=0,outZero=0; //入度。出度 int max(int a,int b)
{
if(a>b) return a;
return b;
} int min(int a,int b)
{
if(a<b) return a;
return b;
} void AddEdge(int U,int V)
{
edges[++nCount].u=U;
edges[nCount].v=V;
edges[nCount].next=head[U];
head[U]=nCount;
} void tarjan(int u)
{
dfn[u]=low[u]=++index;
stack[++top]=u; //该点入栈
inStack[u]=true;
for(int p=head[u];p!=-1;p=edges[p].next)
{
int v=edges[p].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(inStack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
int v;
if(dfn[u]==low[u])
{
tot++;
do
{
v=stack[top--];
belong[v]=tot;
inStack[v]=false;
}
while(u!=v);
}
} int main()
{
int to;
cin>>N;
memset(head,-1,sizeof(head));
for(int i=1;i<=N;i++)
{
while(1)
{
cin>>to;
if(to==0) break;
AddEdge(i,to);
map[i][to]=true;
}
}
for(int i=1;i<=N;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(map[i][j]&&belong[i]!=belong[j])
{
inDegree[belong[j]]++;
outDegree[belong[i]]++;
}
}
for(int i=1;i<=tot;i++)
{
if(!inDegree[i]) inZero++;
if(!outDegree[i]) outZero++;
}
if(tot==1) cout<<1<<endl<<0<<endl;
else cout<<inZero<<endl<<max(inZero,outZero)<<endl;
return 0;
}
[POJ 1236][IOI 1996]Network of Schools的更多相关文章
- POJ 1236——Network of Schools——————【加边形成强连通图】
Network of Schools Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u ...
- poj 1236 Network of Schools(又是强连通分量+缩点)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- [tarjan] poj 1236 Network of Schools
主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K To ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- POJ 1236 Network of Schools (有向图的强连通分量)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9073 Accepted: 359 ...
- poj 1236 Network of Schools(连通图入度,出度为0)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- poj 1236 Network of Schools(tarjan+缩点)
Network of Schools Description A number of schools are connected to a computer network. Agreements h ...
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- POJ 1236 Network of Schools(强连通分量)
POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...
随机推荐
- LaTeX排版设置图表的位置 Positioning images and tables
Positioning images and tables LATEX is an editing tool that takes care of the format so you only hav ...
- sonar使用故障Unable to load component class org.sonar.scanner.report.ActiveRulesPublisher/Unable to load component interface org.sonar.api.batch.rule.ActiveRules: NullPointerException
nginx后两个sonar负载分担 解决办法 Credit to @teryk-sonarsource-team, just making it an answer: Delete the direc ...
- c#抓去网页
c#利用WebClient和WebRequest获取网页源代码的比较 2011-11-28 10:26:42 我来说两句 收藏 我要投稿 C#中一般是可以利用WebClient类和WebReq ...
- RESTful概念理解
基础 REST 定义了一组体系架构原则,您可以根据这些原则设计以系统资源为中心的 Web 服务,包括使用不同语言编写的客户端如何通过 HTTP 处理和传输资源状态. 如果考虑使用它的 Web 服务的数 ...
- Linux网络编程之聊天程序(TCP协议之select)
服务器端:server.c #include <stdio.h> #include <stdlib.h> #include <errno.h> #include & ...
- C#应用视频教程1.2 Socket通信客户端实现
接下来我们尝试实现最简单的Socket客户端,为了确保只可能你的代码有问题,服务器要先用别人成熟的代码测试(这也是编程的一个技巧,先不要用自己写的客户端测试自己写的服务器,这样出了问题你也不知道谁有问 ...
- 很全的Python 面试题 github
https://github.com/taizilongxu/interview_python
- Jquery重新学习之九[Ajax运用总结C]
前两篇文章主要介绍Jquery如何利用Ajax进行操作数据,主要介绍调用的方法:其中Jquery.ajax()是Jquery中最底层的方法:Jquery还定义的一个方法跟几个事件为Jquery.aja ...
- profiler跟踪事件存为表之后性能分析工具
使用profiler建立跟踪,将跟踪结果存到表中,使用下面存储过程执行 exec temp_profiler 'tra_tablename'对表数据进行处理归类,然后进行性能分析 1.先建存储过程 2 ...
- 在mvc4里怎样引用:System.Web.Optimization和entityframework
请在nuget 里运行: Install-Package Microsoft.AspNet.Web.Optimizationinstall-package entityframework