Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is
in the distribution list of school A, then A does not necessarily appear in the list of school B


You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

题目大意:给定一个有向图,求至少要有多少个点, 才干从这些点出发到达全部点;至少要加入多少条边,才干从随意一点出发到达全部点

首先要推出一个定理:在DAG中,对于全部入度不为0的点,一定有入度为0的点可达(由于从入度为0的点倒着走,一定能走到入度不为0的点)

于是此题可用tarjan缩点,求有多少个入度为0的点,这就是第一个问题的答案。

第二个问题的答案为入度为0的点和出度为0的点的最小值。证明比較难。略。

对于这道题,由于仅仅要求入度和出度为0的点,故仅仅需在tarjan过程中记录每一个点归属哪个强连通分量。然后统计输出就可以

#include <iostream>
#include <stdio.h>
#include <string.h> #define MAXE 500
#define MAXV 3000 using namespace std; int N; struct edge
{
int u,v,next;
}edges[MAXV]; int head[MAXE],nCount=0;
int dfn[MAXE],low[MAXE],index=0;
int belong[MAXE],tot=0; //belong[i]=i点所属的强连通分量,tot=强连通分量总数
bool inStack[MAXE];
int stack[MAXE*4],top=0;
bool map[MAXE][MAXE];
int inDegree[MAXE],outDegree[MAXE],inZero=0,outZero=0; //入度。出度 int max(int a,int b)
{
if(a>b) return a;
return b;
} int min(int a,int b)
{
if(a<b) return a;
return b;
} void AddEdge(int U,int V)
{
edges[++nCount].u=U;
edges[nCount].v=V;
edges[nCount].next=head[U];
head[U]=nCount;
} void tarjan(int u)
{
dfn[u]=low[u]=++index;
stack[++top]=u; //该点入栈
inStack[u]=true;
for(int p=head[u];p!=-1;p=edges[p].next)
{
int v=edges[p].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(inStack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
int v;
if(dfn[u]==low[u])
{
tot++;
do
{
v=stack[top--];
belong[v]=tot;
inStack[v]=false;
}
while(u!=v);
}
} int main()
{
int to;
cin>>N;
memset(head,-1,sizeof(head));
for(int i=1;i<=N;i++)
{
while(1)
{
cin>>to;
if(to==0) break;
AddEdge(i,to);
map[i][to]=true;
}
}
for(int i=1;i<=N;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(map[i][j]&&belong[i]!=belong[j])
{
inDegree[belong[j]]++;
outDegree[belong[i]]++;
}
}
for(int i=1;i<=tot;i++)
{
if(!inDegree[i]) inZero++;
if(!outDegree[i]) outZero++;
}
if(tot==1) cout<<1<<endl<<0<<endl;
else cout<<inZero<<endl<<max(inZero,outZero)<<endl;
return 0;
}



[POJ 1236][IOI 1996]Network of Schools的更多相关文章

  1. POJ 1236——Network of Schools——————【加边形成强连通图】

    Network of Schools Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u ...

  2. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  4. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  5. POJ 1236 Network of Schools (有向图的强连通分量)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9073   Accepted: 359 ...

  6. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

随机推荐

  1. Java:Object类详解

    Java的一些特性会让初学者感到困惑,但在有经验的开发者眼中,却是合情合理的.例如,新手可能不会理解Object类.这篇文章分成三个部分讲跟Object类及其方法有关的问题. 上帝类 问:什么是Obj ...

  2. C++中 使用数组作为map容器VAlue值的解决方法

    1)是用Vector容器代替数组 2)使用数组指针(需要注意局部变量的问题,指针是否需要用new创建) int red [ 3 ]   = { 1 , 0 , 0 }; int green [ 3 ] ...

  3. Orchard运用 - 为评论启用Gravatar头像

    在前一篇随笔中我曾分享如何为Orchard特定主题添加独立代码文件, 今儿延续如何把对应代码应用到Views上. 对此我不妨把为评论启用Gravatar头像这一例子来实现.其实很简单, 思路大概就是创 ...

  4. java中读取配置文件中的数据

    1.先在项目中创建一个包(如:config),再创建一个配置文件(如:a.properties),添加配置信息如下:比如:name=kakaage=28 2.代码:import java.io.IOE ...

  5. 通用 CSS 笔记、建议与指导

    在参与规模庞大.历时漫长且人手众多的项目时,所有开发者遵守如下规则极为重要: + **保持 CSS 的可维护性** + **保持代码清晰易懂** + **保持代码的可拓展性** 为了实现这一目标,我们 ...

  6. 初始小R-安装启动与测试

    非常感谢<深入浅出数据分析>这本书让我有幸认识了R,多多少少的弥补了我心里对R语言.R分析.R工具的模糊认知,下面我们就来体验一下R语言的魅力吧!GO! 一:下载R R官方地址:http: ...

  7. JS实现的MAP结构数据

    Array.prototype.remove = function(s) { for (var i = 0; i < this.length; i++) { if (s == this[i]) ...

  8. 使用javascript开发的视差滚动效果的云彩 极客标签 - 做最棒的极客知识分享平台

    www.gbtags.com 使用javascript开发的视差滚动效果的云彩 阅读全文:使用javascript开发的视差滚动效果的云彩 极客标签 - 做最棒的极客知识分享平台

  9. 为pc编译配置安装当前最新的内核

    搜索公众号:itxxgh  (IT学习干货),全公益.免费.定期,提供,<IT学习教程>.不会骚扰大家,仅仅需轻点关注,也会传播<中华传统文化>传播正能量.  或扫描二维码 1 ...

  10. hdu2444 The Accomodation of Students(推断二分匹配+最大匹配)

    //推断是否为二分图:在无向图G中,假设存在奇数回路,则不是二分图.否则是二分图. //推断回路奇偶性:把相邻两点染成黑白两色.假设相邻两点出现颜色同样则存在奇数回路. 也就是非二分图. # incl ...