Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is
in the distribution list of school A, then A does not necessarily appear in the list of school B


You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

题目大意:给定一个有向图,求至少要有多少个点, 才干从这些点出发到达全部点;至少要加入多少条边,才干从随意一点出发到达全部点

首先要推出一个定理:在DAG中,对于全部入度不为0的点,一定有入度为0的点可达(由于从入度为0的点倒着走,一定能走到入度不为0的点)

于是此题可用tarjan缩点,求有多少个入度为0的点,这就是第一个问题的答案。

第二个问题的答案为入度为0的点和出度为0的点的最小值。证明比較难。略。

对于这道题,由于仅仅要求入度和出度为0的点,故仅仅需在tarjan过程中记录每一个点归属哪个强连通分量。然后统计输出就可以

#include <iostream>
#include <stdio.h>
#include <string.h> #define MAXE 500
#define MAXV 3000 using namespace std; int N; struct edge
{
int u,v,next;
}edges[MAXV]; int head[MAXE],nCount=0;
int dfn[MAXE],low[MAXE],index=0;
int belong[MAXE],tot=0; //belong[i]=i点所属的强连通分量,tot=强连通分量总数
bool inStack[MAXE];
int stack[MAXE*4],top=0;
bool map[MAXE][MAXE];
int inDegree[MAXE],outDegree[MAXE],inZero=0,outZero=0; //入度。出度 int max(int a,int b)
{
if(a>b) return a;
return b;
} int min(int a,int b)
{
if(a<b) return a;
return b;
} void AddEdge(int U,int V)
{
edges[++nCount].u=U;
edges[nCount].v=V;
edges[nCount].next=head[U];
head[U]=nCount;
} void tarjan(int u)
{
dfn[u]=low[u]=++index;
stack[++top]=u; //该点入栈
inStack[u]=true;
for(int p=head[u];p!=-1;p=edges[p].next)
{
int v=edges[p].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(inStack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
int v;
if(dfn[u]==low[u])
{
tot++;
do
{
v=stack[top--];
belong[v]=tot;
inStack[v]=false;
}
while(u!=v);
}
} int main()
{
int to;
cin>>N;
memset(head,-1,sizeof(head));
for(int i=1;i<=N;i++)
{
while(1)
{
cin>>to;
if(to==0) break;
AddEdge(i,to);
map[i][to]=true;
}
}
for(int i=1;i<=N;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(map[i][j]&&belong[i]!=belong[j])
{
inDegree[belong[j]]++;
outDegree[belong[i]]++;
}
}
for(int i=1;i<=tot;i++)
{
if(!inDegree[i]) inZero++;
if(!outDegree[i]) outZero++;
}
if(tot==1) cout<<1<<endl<<0<<endl;
else cout<<inZero<<endl<<max(inZero,outZero)<<endl;
return 0;
}



[POJ 1236][IOI 1996]Network of Schools的更多相关文章

  1. POJ 1236——Network of Schools——————【加边形成强连通图】

    Network of Schools Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u ...

  2. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  4. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  5. POJ 1236 Network of Schools (有向图的强连通分量)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9073   Accepted: 359 ...

  6. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

随机推荐

  1. poj 3264 Balanced Lineup 题解

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Subm ...

  2. Linux下Anaconda的安装使用与卸载及问题解决

    1. 安装 到官网下载对应的版本文件:Download Anaconda Now! 下载完之后,在终端输入: bash 下载好的文件 整个过程点几下回车就好了.但是到最后一步,会提示是否把anacon ...

  3. 文字尺寸、宽高的测量 Paint FontMetrics

    Paint.FontMetrics类简介 Google文档中的描述: ) throw new IndexOutOfBoundsException(); if (bounds == null) thro ...

  4. 一招搞定多Offer选择

    12月9号在论坛看到一位毕业生问了一个问题: 如今两个offer 一个在南京,搞.net ,公司是国电南自.税前一年加起来几乎相同7.2万.一个是在上海.搞java,公司名叫鑫合汇(不知道各位有没实用 ...

  5. 构建高可用Linux服务器一

    1.显示物理CPU个数:cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -1 2.显示每个物理CPU中的core ...

  6. Download Visual Studio

    Welcome to a new way to install Visual Studio! In our newest version, we've made it easier for you t ...

  7. 如何用 js 递归输出树型

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  8. k-means聚类学习

    4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在 ...

  9. matlab练习程序(三阶张量T-QR分解)

    转自:http://www.cnblogs.com/tiandsp/archive/2012/10/31/2747971.html 这里所谓的张量和黎曼那里的张量是不一样的,那个张量更多的用在物理上, ...

  10. 算法笔记_156:算法提高 6-17复数四则运算(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 设计复数库,实现基本的复数加减乘除运算. 输入时只需分别键入实部和虚部,以空格分割,两个复数之间用运算符分隔:输出时按a+bi的格式在屏幕上打印结果 ...