[POJ 1236][IOI 1996]Network of Schools
Description
in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that
by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made
so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.
Input
the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
Output
Sample Input
5
2 4 3 0
4 5 0
0
0
1 0
Sample Output
1
2
Source
题目大意:给定一个有向图,求至少要有多少个点, 才干从这些点出发到达全部点;至少要加入多少条边,才干从随意一点出发到达全部点
首先要推出一个定理:在DAG中,对于全部入度不为0的点,一定有入度为0的点可达(由于从入度为0的点倒着走,一定能走到入度不为0的点)
于是此题可用tarjan缩点,求有多少个入度为0的点,这就是第一个问题的答案。
第二个问题的答案为入度为0的点和出度为0的点的最小值。证明比較难。略。
对于这道题,由于仅仅要求入度和出度为0的点,故仅仅需在tarjan过程中记录每一个点归属哪个强连通分量。然后统计输出就可以
#include <iostream>
#include <stdio.h>
#include <string.h> #define MAXE 500
#define MAXV 3000 using namespace std; int N; struct edge
{
int u,v,next;
}edges[MAXV]; int head[MAXE],nCount=0;
int dfn[MAXE],low[MAXE],index=0;
int belong[MAXE],tot=0; //belong[i]=i点所属的强连通分量,tot=强连通分量总数
bool inStack[MAXE];
int stack[MAXE*4],top=0;
bool map[MAXE][MAXE];
int inDegree[MAXE],outDegree[MAXE],inZero=0,outZero=0; //入度。出度 int max(int a,int b)
{
if(a>b) return a;
return b;
} int min(int a,int b)
{
if(a<b) return a;
return b;
} void AddEdge(int U,int V)
{
edges[++nCount].u=U;
edges[nCount].v=V;
edges[nCount].next=head[U];
head[U]=nCount;
} void tarjan(int u)
{
dfn[u]=low[u]=++index;
stack[++top]=u; //该点入栈
inStack[u]=true;
for(int p=head[u];p!=-1;p=edges[p].next)
{
int v=edges[p].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(inStack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
int v;
if(dfn[u]==low[u])
{
tot++;
do
{
v=stack[top--];
belong[v]=tot;
inStack[v]=false;
}
while(u!=v);
}
} int main()
{
int to;
cin>>N;
memset(head,-1,sizeof(head));
for(int i=1;i<=N;i++)
{
while(1)
{
cin>>to;
if(to==0) break;
AddEdge(i,to);
map[i][to]=true;
}
}
for(int i=1;i<=N;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
{
if(map[i][j]&&belong[i]!=belong[j])
{
inDegree[belong[j]]++;
outDegree[belong[i]]++;
}
}
for(int i=1;i<=tot;i++)
{
if(!inDegree[i]) inZero++;
if(!outDegree[i]) outZero++;
}
if(tot==1) cout<<1<<endl<<0<<endl;
else cout<<inZero<<endl<<max(inZero,outZero)<<endl;
return 0;
}
[POJ 1236][IOI 1996]Network of Schools的更多相关文章
- POJ 1236——Network of Schools——————【加边形成强连通图】
Network of Schools Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u ...
- poj 1236 Network of Schools(又是强连通分量+缩点)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- [tarjan] poj 1236 Network of Schools
主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K To ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- POJ 1236 Network of Schools (有向图的强连通分量)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9073 Accepted: 359 ...
- poj 1236 Network of Schools(连通图入度,出度为0)
http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- poj 1236 Network of Schools(tarjan+缩点)
Network of Schools Description A number of schools are connected to a computer network. Agreements h ...
- POJ 1236 Network of Schools(强连通 Tarjan+缩点)
POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意: 给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...
- POJ 1236 Network of Schools(强连通分量)
POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...
随机推荐
- ajax成功返回数据中存在多余字符的处理
ajax里有需要判断反馈的字符串是否为“ok”,在浏览器里调试,看到返回的内容明明是“ok”,但是if(“ok”==data)判断为false,用alert打印内容也是ok,但是打印长度的时候却是3. ...
- [gevent源代码分析] 深度分析gevent执行流程
一直对gevent执行流程比較模糊,近期看源代码略有所得.不敢独享.故分享之. gevent是一个高性能网络库,底层是libevent,1.0版本号之后是libev.核心是greenlet.geven ...
- Ajax技术——与服务器通信
1. 发送请求 Ajax可以通过XMLHttpRequest对象实现采用异步方式在后台发送请求.通常情况下,Ajax发送请求有两种,一种是发送GET请求,另一种是发送POST请求.但是无论发送哪种请求 ...
- Android Studio 打印调试信息
转自:https://www.2cto.com/kf/201611/569468.html 之前开发单片机软件还是上位机都习惯使用printf(),相信很多很会有和我一样的习惯.开始学习安卓了,当然也 ...
- Informatica 常用组件Source Qualifier之六 外部联接
可以使用源限定符和应用程序源限定符转换在相同的数据库中执行两个源的外部联接.当 PowerCenter 执行外部联接时,它将返回其中一个源表的所有行和另一个源表中匹配联接条件的行. 如果您需要联接两个 ...
- ShellCode的编写入门
上次学习了下堆喷漏洞的原理,虽说之前有学习过缓冲区溢出的原理,但还没了解过堆喷这个概念,于是趁此机会学习了,顺便复习了缓冲区溢出这块知识,之前由于各种原因对Shellcode的编写只是了解个大概,并没 ...
- thinkphp问题
这几天组里有个php系统报安全漏洞,负责的厂商跑了,没办法,被组长丢过来改漏洞,记录一下部分内容. 配置php的环境 参考https://blog.csdn.net/u011415782/artic ...
- Android怎样设置圆角button
1. 在res文件夹下的drawable文件夹下新建shape.xml文件 <?xml version="1.0" encoding="utf-8"?&g ...
- 用Sass创建MetaFizzy效果
来源:GBin1.com Hugo发现了一个绚丽的css效果应用于web中并教会你如何聪明的重建和使用它.两天前,我看见笔者Hugo在css帮助下重写MetaFizzy的效果,Hugo帮助我们找到了一 ...
- Jmeter--google plugin插件监控被測系统资源方法
一.插件准备 1.插件下载地址 http://jmeter-plugins.org/downloads/all/ 下面有两个版本号的.1.1.2和1.1.3.注意Jmeter版本号 1.1.2支持Jm ...