=================================================  sigmod.m  =========================================================================

function g = sigmoid(z)
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.

% You need to return the following variables correctly
g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar).

g = 1 ./ (1+exp(-z))

% =============================================================

end

===================================================== predict.m =====================================================================

function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)

m = size(X, 1); % Number of training examples

% You need to return the following variables correctly
p = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%

p = round(sigmoid(X * theta));   % round(>= 0.5) = 1, round(< 0.5) = 0

% =========================================================================

end

 =================================================  costFunction.m  =========================================================================

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%

J = (-y' * log(sigmoid(X * theta)) - (1 - y)' * log(1 - sigmoid(X * theta))) / m;

grad = X' * (sigmoid(X * theta) - y) / m;

% =============================================================

end

吴恩达-AI-机器学习课后习题解析-第三周的更多相关文章

  1. 吴恩达深度学习课后习题第5课第1周第3小节: Jazz Improvisation with LSTM

    目录 Improvise a Jazz Solo with an LSTM Network Packages 1 - Problem Statement 1.1 - Dataset What are ...

  2. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  3. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  4. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  5. 吴恩达《机器学习》课程总结(5)_logistic回归

    Q1分类问题 回归问题的输出可能是很大的数,而在分类问题中,比如二分类,希望输出的值是0或1,如何将回归输出的值转换成分类的输出0,1成为关键.注意logistics回归又称 逻辑回归,但他是分类问题 ...

  6. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  7. 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归

    ❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...

  8. 吴恩达《机器学习》课程笔记——第七章:Logistic回归

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 7.1 分类问题 本节内容:什么是分类 之前的章节介绍的都是回归问题,接下来是分类问题.所谓的分类问题是指输出变量为有限个离散 ...

  9. 吴恩达j机器学习之过拟合

    五.编程作业: 见:https://www.cnblogs.com/tommyngx/p/9933803.html

随机推荐

  1. L129

    Iraq Sees Spike in Water-Borne IllnessesIraqi health officials say that a health crisis stemming fro ...

  2. 使用Hydra通过ssh破解密码

    Hydra是非常高效的网络登录破解工具,它可以对多种服务程序执行暴力破解(SSH.VNC等等). 防止这种攻击其实很容易,方法很多.以SSH为例: Ubuntu:使用Port Knocking隐藏SS ...

  3. android 字符串string

    String : 字符串类型 http://www.open-open.com/lib/view/open1387942832078.html 一.构造函数     String(byte[ ] by ...

  4. TCP/IP网络协议攻击

    kali视频学习请看 http://www.cnblogs.com/lidong20179210/p/8909569.html 这部分涉及: ARP缓存欺骗攻击 ICMP重定向攻击 SYN FLOOD ...

  5. block的基本使用

    block用来保存一段代码 block的标志:^ block跟函数很像: 1. 可以保存代码 2. 有返回值 3. 有形参 4. 调用方式一样 定义bolock变量 例1: void (^myBloc ...

  6. keycloak && docker安装 &&spring boot 集成使用

    1. 基础依赖 a. docker mysql b. dokcer keycloak-mysql   2. 安装     mysql (注意实际使用最好使用本地数据卷) docker run --na ...

  7. ORA-28595: Extproc 代理: DLL 路径无效解决办法

    报错信息: ORA-28595: Extproc 代理: DLL 路径无效 ORA-06512: 在 "SDE.ST_GEOMETRY_SHAPELIB_PKG", line 70 ...

  8. QLCDNumber设置背景色和显示数字颜色【转载】

    http://www.qtcn.org/bbs/read-htm-tid-55176.html //LCD时间显示    QLCDNumber *m_pLcdTime = new QLCDNumber ...

  9. php查询mysql时,报超出内存错误(select count(distinct))时

    学时服务器查询教练所带人数时,使用select count(distinct(u_STRNO))时报超出内存错误.后参考“mysqld-nt: Out of memory解决方法”http://jin ...

  10. acm中文版

    http://acm.nyist.net/JudgeOnline/problem.php?pid=1