HDU 2521 反素数(数论,比较)
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
using namespace std;
int cmp(int x)//计算因子数
{
int cnt=0;
for(int j=1;j<=x;j++)
if(x%j==0)
cnt++; return cnt;
}
int main()
{
int n;
int a,b;
int cnt,maxn,index;
scanf("%d",&n); while(n--)
{
scanf("%d%d",&a,&b);
maxn=0;//初始化为0
index=0;
for(int i=a;i<=b;i++)//从a-b遍历
{//若因子数大于maxn,则替换值+下标
if(cmp(i) > maxn)
{
maxn=cmp(i);
index=i;
}
}
printf("%d\n",index);//输出有最大因子的最小数
}
return 0;
}
HDU 2521 反素数(数论,比较)的更多相关文章
- HDOJ(HDU) 2521 反素数(因子个数~)
Problem Description 反素数就是满足对于任意i(0< i < x),都有g(i) < g(x),(g(x)是x的因子个数),则x为一个反素数.现在给你一个整数区间[ ...
- HDU 2521 反素数 模拟题
解题报告:水题,直接附上代码,只是觉得这题的作者是不是吃饱了饭撑的,反素数的概念跟这题一点关系都没有. #include<cstdio> int judge1(int k) { ; ;i& ...
- hdu 2521 反素数(打表)
反素数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- ZOJ 2562 HDU 4228 反素数
反素数: 对于不论什么正整数x,起约数的个数记做g(x).比如g(1)=1,g(6)=4. 假设某个正整数x满足:对于随意i(0<i<x),都有g(i)<g(x),则称x为反素数. ...
- [POI2002][HAOI2007]反素数 数论 搜索 好题
题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- zoj2562:搜索+数论(反素数)
题目大意:求n以内因子数量最多的数 n的范围为1e16 其实相当于求n以内最大的反素数... 由素数中的 算数基本原理 设d(a)为a的正因子的个数,则 d(n)=(a1+1)(a2+1)..... ...
- hdu 4542 "小明系列故事——未知剩余系" (反素数+DFS剪枝)
传送门 参考资料: [1]:https://blog.csdn.net/acdreamers/article/details/25049767 题意: 输入两个数 type , k: ①type = ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
随机推荐
- C#的23种设计模式概括
创建型: 1. 单件模式(Singleton Pattern) 2. 抽象工厂(Abstract Factory) 3. 建造者模式(Builder) ...
- AtCoder Grand Contest 025 Problem D - Choosing Points
题目大意:输入$n,d1,d2$,你要找到$n^2$个整点 x, y 满足$0 \leqslant x, y<2n$.并且找到的任意两个点距离,既不是$\sqrt{d1}$,也不是 $\sqrt ...
- 【NOIP 模拟赛】Evensgn 剪树枝 树形dp
由于树规做的少所以即使我考试想出来正确的状态也不会转移. 一般dp的转移不那么繁杂(除了插头.....),即使多那也是清晰明了的,而且按照树规的一般思路,我们是从下到上的,所以我们要尽量简洁地从儿子那 ...
- Elasticsearch报错
[2018-07-12T10:32:47,642][INFO ][o.e.b.BootstrapChecks ] [VfCcJIq] bound or publishing to a non-loop ...
- 2017年研究生数学建模D题(前景目标检测)相关论文与实验结果
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比 ...
- 类名.class 类名.this 详解
我们知道在java中,一个类在被加载的时候虚拟机就会自动的生成一个这个类的一个Class类型的“类对象”,每个类都对应着一个这样的类对象,通过这个Class类型的类对象,我们就能够使用“内省与反射”机 ...
- mysql__索引的设计和使用
索引的设计和使用 1 索引概述 MySIAM和InnoDB存储引擎的表默认创建的都是BTREE索引,MySQL目前不支持函数索引,但是支持前缀索引.还支持全文本索引,但是只有MySIAM(5.0开始) ...
- NET面试题 (四)
1, 面向对象的思想主要包括什么? 封装.继承.多态. TLW: 封装:用抽象的数据类型将数据和基于数据的操作封装在一起,数据被保护在抽象数据类型内部. 继承:子类拥有父类的所有数据和操作. 多态:一 ...
- httpFS访问
编辑文件httpfs-env.sh 执行sbin/httpfs.sh 执行命令curl -i "http://192.168.1.213:14000/webhdfs/v1?user.name ...
- php中的split函数
字符串分割函数:split函数 <?php $email='microsoft@exam!ple.com'; $domain = split('\.|@|!',$email);//split分割 ...