BZOJ- 2733: 永无乡 (并查集&线段树合并)
题意:给定N个节点,K次操作,操作有两种,1是合并两个集合,2是求某个集合的第K大(从小到大排序)。
思路:合并只要启发式即可。此题可以用线段树,保存1到N的排序的出现次数和。 复杂度O(NlogN)。想象一下,当其中一棵树节点少的时候,复杂度是O(logN)的,次数不超过N次;当两棵树的节点都蛮多的时候,复杂度是O(N)的,但是这样的合并能使得集合变得很大,显然这样的合并次数非常少,小于logN次。
所以合并线段树的总复杂度就算O(NlogN),每次询问K大的操作是线段树常规操作,单词复杂度是logN的
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int rt[maxn],ls[maxn],rs[maxn],fa[maxn],cnt;
int a[maxn],id[maxn],sum[maxn];
int find(int u){
if(fa[u]!=u) fa[u]=find(fa[u]);
return fa[u];
}
void insert(int &Now,int L,int R,int pos)
{
if(!Now) Now=++cnt; sum[Now]++;
if(L==R) return ;int Mid=(L+R)>>;
if(pos<=Mid) insert(ls[Now],L,Mid,pos);
else insert(rs[Now],Mid+,R,pos);
}
int merge(int x,int y){
if(!x) return y;
if(!y) return x;
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
sum[x]=sum[ls[x]]+sum[rs[x]];
return x;
}
int query(int x,int L,int R,int num){
if(L==R) return L; int Mid=(L+R)>>;
if(sum[ls[x]]>=num) return query(ls[x],L,Mid,num);
return query(rs[x],Mid+,R,num-sum[ls[x]]);
}
int main()
{
int N,M,K,u,v; char opt[];
scanf("%d%d",&N,&M);
rep(i,,N) scanf("%d",&a[i]),id[a[i]]=i;
rep(i,,N) fa[i]=i;
rep(i,,M) {
scanf("%d%d",&u,&v);
int p=find(u),q=find(v);
if(p!=q) fa[p]=q;
}
scanf("%d",&K);
rep(i,,N) insert(rt[find(i)],,N,a[i]);
rep(i,,K){
scanf("%s%d%d",opt,&u,&v);
if(opt[]=='B'){
int p=find(u),q=find(v);
if(p!=q){
fa[q]=p;
rt[p]=merge(rt[p],rt[q]);
}
}
else {
int p=find(u);
if(sum[rt[p]]<v) puts("-1");
else printf("%d\n",id[query(rt[p],,N,v)]);
}
}
return ;
}
BZOJ- 2733: 永无乡 (并查集&线段树合并)的更多相关文章
- bzoj 2733 永无乡 - 并查集 - 线段树
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
- BZOJ2733 [HNOI2012]永无乡(并查集+线段树合并)
题目大意: 在$n$个带权点上维护两个操作: 1)在点$u,v$间连一条边: 2)询问点$u$所在联通块中权值第$k$小的点的编号,若该联通块中的点的数目小于$k$,则输出$-1$: 传送门 上周的模 ...
- B20J_2733_[HNOI2012]永无乡_权值线段树合并
B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...
- 【洛谷P3224】永无乡 并查集+Splay启发式合并
题目大意:给定 N 个点的图,点有点权,初始有一些无向边,现在有 Q 个询问,每个询问支持动态增加一条无向边连接两个不连通的点和查询第 X 个点所在的联通块中权值第 K 大的是哪个点. 题解:学会了平 ...
- BZOJ 3910 并查集+线段树合并
思路: 1. 并查集+线段树合并 记得f[LCA]==LCA的时候 f[LCA]=fa[LCA] 2.LCT(并不会写啊...) //By SiriusRen #include <cstdio& ...
- bzoj2733 / P3224 [HNOI2012]永无乡(并查集+线段树合并)
[HNOI2012]永无乡 每个联通块的点集用动态开点线段树维护 并查集维护图 合并时把线段树也合并就好了. #include<iostream> #include<cstdio&g ...
- 【HNOI2012】永无乡 题解(并查集+线段树合并)
题目链接 给定一张含$n$个点$m$条边的无向图,每个点有一个重要指数$a_i$.有两种操作:1.在$x$和$y$之间连一条边:2.求$x$所在连通块中重要程度第$k$小的点. ----------- ...
- [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并
永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...
- Codeforces Gym 101194G Pandaria (2016 ACM-ICPC EC-Final G题, 并查集 + 线段树合并)
题目链接 2016 ACM-ICPC EC-Final Problem G 题意 给定一个无向图.每个点有一种颜色. 现在给定$q$个询问,每次询问$x$和$w$,求所有能通过边权值不超过$w$的 ...
- BZOJ 2733 永无乡
splay启发式合并 启发式合并其实就是把集合数量小的合并到集合数量大的里去. 怎么合并呢,直接一个一个插入就行了.. 用并查集维护连通性,find(i)可以找到所在splay的编号 这题好像还可以合 ...
随机推荐
- Java多线程(Java总结篇)
Java总结篇:Java多线程 多线程作为Java中很重要的一个知识点,在此还是有必要总结一下的. 一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上 ...
- django 查询
mail = UserProfile.objects.get(email = email) get如果没有查询到会抛出一个不存在的异常 ...
- (转)【腾讯 TMQ】 接口测试用例设计
导语 这是我在其他的开源社区看到的一篇分享帖子.这篇文章的目的只是为大家提供一个思路,但是实现成本太高了,因为一个接口设计的接口测试用例很多,一般公司的接口数量几百到上千不等,每一个接口都设计这么多测 ...
- 容器排序之sort,stable_sort
bool isShorter(const string &s1, const string &sz){ return s1.size() < sz.size(); } int m ...
- java中类名.class, class.forName(), getClass()区别
Class对象的生成方式如下: 1.类名.class 说明: JVM将使用类装载器, 将类装入内存(前提是:类还没有装入内存),不做类的初始化工作.返回Class的对象 2.Cla ...
- 【HackerRank】Manasa and Stones
Change language : Manasa 和 她的朋友出去徒步旅行.她发现一条小河里边顺序排列着带有数值的石头.她开始沿河而走,发现相邻两个石头上的数值增加 a 或者 b. 这条小河的尽头有一 ...
- linux 音频驱动
转:https://wenku.baidu.com/view/7394e16d7e21af45b307a8dc.html?pn=51 linux_sound_alsa_ALSA体系SOC子系统中数据流 ...
- NoSQL数据库memcache和redis区别
在web后台发开面试中,经常会被问道memcache和redis的区别和使用情况. 其中memcache和redis都是基于内存存储的缓存系统,存储形式key--value键值对的形式. 区别: 1. ...
- Kubernetes List-Watch
list-watch,作为k8s系统中统一的异步消息传递方式,对系统的性能.数据一致性起到关键性的作用. list-watch操作需要做这么几件事: 由组件向apiserver而不是etcd发起wat ...
- MongoDB快速入门(九)- 投影
MongoDB投影 mongodb投影意义是只选择需要的数据,而不是选择整个一个文档的数据.如果一个文档有5个字段,只需要显示3个,只从中选择3个字段. MongoDB的find()方法,解释了Mon ...