1151 LCA in a Binary Tree(30 分)
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
Given any two nodes in a binary tree, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..
Sample Input:
6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
有一道考研题也是求lca,突然想到一个不用建树的方法,不过要额外小心细节,避免超时。依然用map记录元素在中序遍历数组中位置,下标不为0,如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
using namespace std;
int pre[],in[],m,n;
map<int,int> mp;
void check(int a,int b) {
int aa = mp[a],bb = mp[b];
if(!bb && !aa)printf("ERROR: %d and %d are not found.\n",a,b);
else if(!aa)printf("ERROR: %d is not found.\n",a);
else if(!bb)printf("ERROR: %d is not found.\n",b);
else {
if(a == b) {
printf("%d is an ancestor of %d.\n",a,b);
return;
}
int p1 = ,p2 = n,i1 = ,i2 = n;
while(p1 <= p2) {
int temp = pre[p1],mtemp = mp[temp];
if(temp == a) {
printf("%d is an ancestor of %d.\n",a,b);
return;
}
else if(temp == b) {
printf("%d is an ancestor of %d.\n",b,a);
return;
}
if(mtemp > aa && mtemp > bb) i2 = mtemp - ,p1 ++,p2 = p1 + i2 - i1;
else if(mtemp < aa && mtemp < bb) i1 = mtemp + ,p1 = p2 - i2 + i1;
else {
printf("LCA of %d and %d is %d.\n",a,b,temp);
return;
}
}
}
}
int main() {
int a,b;
scanf("%d%d",&m,&n);
for(int i = ;i <= n;i ++) {
scanf("%d",&in[i]);
mp[in[i]] = i;
}
for(int i = ;i <= n;i ++) {
scanf("%d",&pre[i]);
}
for(int i = ;i < m;i ++) {
scanf("%d%d",&a,&b);
check(a,b);
}
return ;
}
给定一棵树的中序和前序遍历,要求查询两个点的最低祖先,需要记录高度。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
using namespace std;
struct tree
{
int Data,Height;
tree *Last,*Left,*Right;
}*head;
int q[],z[],m,n;
map<int,tree *> mp;///根据序号映射到结点
tree *createNode(int d,int h)///创建新结点并返回
{
tree *p = new tree();
p -> Data = d;
mp[d] = p;
p -> Height = h;
p -> Last = p -> Left = p -> Right = NULL;
return p;
}
tree *createTree(int ql,int qr,int zl,int zr,int h)///前中序 还原树
{
tree *p = createNode(q[ql],h);
for(int i = zl;i <= zr;i ++)
{
if(z[i] == q[ql])
{
if(i > zl)p -> Left = createTree(ql + ,ql + i - zl,zl,i - ,h + ),p -> Left -> Last = p;
if(i < zr)p -> Right = createTree(ql + i - zl + ,qr,i + ,zr,h + ),p -> Right -> Last = p;
break;
}
}
return p;
}
void check(int a,int b)///判断两点
{
if(mp[a] == NULL && mp[b] == NULL)printf("ERROR: %d and %d are not found.\n",a,b);
else if(mp[a] == NULL)printf("ERROR: %d is not found.\n",a);
else if(mp[b] == NULL)printf("ERROR: %d is not found.\n",b);
else {
tree *t1 = mp[a],*t2 = mp[b];
while(t1 -> Height != t2 -> Height) {
if(t1 -> Height > t2 -> Height)t1 = t1 -> Last;
else t2 = t2 -> Last;
}///调整至高度相同
if(t1 == t2) {///一个点是另一个点的祖先
printf("%d is an ancestor of %d.\n",t1 -> Data,a == t1 -> Data ? b : a);
return;
}while(t1 != t2) {
t1 = t1 -> Last;
t2 = t2 -> Last;
}
printf("LCA of %d and %d is %d.\n",a,b,t1 -> Data);
}
}
int main() {
int a,b;
scanf("%d%d",&m,&n);
for(int i = ;i < n;i ++) {
scanf("%d",&z[i]);
}
for(int i = ;i < n;i ++) {
scanf("%d",&q[i]);
}
head = createTree(,n - ,,n - ,);
for(int i = ;i < m;i ++) {
scanf("%d%d",&a,&b);
check(a,b);
}
}
1151 LCA in a Binary Tree(30 分)的更多相关文章
- PAT Advanced 1151 LCA in a Binary Tree (30) [树的遍历,LCA算法]
题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...
- PAT 1151 LCA in a Binary Tree[难][二叉树]
1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...
- 【PAT 甲级】1151 LCA in a Binary Tree (30 分)
题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...
- 1151 LCA in a Binary Tree (30point(s))
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- PAT 甲级 1151 LCA in a Binary Tree
https://pintia.cn/problem-sets/994805342720868352/problems/1038430130011897856 The lowest common anc ...
- 1151 LCA in a Binary Tree
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- PAT甲级|1151 LCA in a Binary Tree 先序中序遍历建树 lca
给定先序中序遍历的序列,可以确定一颗唯一的树 先序遍历第一个遍历到的是根,中序遍历确定左右子树 查结点a和结点b的最近公共祖先,简单lca思路: 1.如果a和b分别在当前根的左右子树,当前的根就是最近 ...
- PAT_A1151#LCA in a Binary Tree
Source: PAT A1151 LCA in a Binary Tree (30 分) Description: The lowest common ancestor (LCA) of two n ...
- PTA 04-树6 Complete Binary Search Tree (30分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/669 5-7 Complete Binary Search Tree (30分) A ...
随机推荐
- webAPI支持跨域
问题描述: 添加引用:右键项目→添加nuget包 在:App_Start/WebApiConfig.Register中添加如下一句话 //跨域配置 config.EnableCors(new Enab ...
- js常用方法汇总
产生在m.n之间的随机整数 //Math.round()把数四舍五入为最接近的整数. function random(m, n) { return Math.round(Math.random() * ...
- MySQL实验1: 新建一个名为 library 的数据库,包含 book、reader 两张表,根据自己的理解安排表的内容并插入数据。
数据表(table)简称表,它是数据库最重要的组成部分之一.数据库只是一个框架,表才是实质内容. 实验: 新建一个名为 library的数据库,包含 book.reader两张表,根据自己的理解安排表 ...
- flume 使用遇到问题及解决
1. ../flume/fchannel/spool/data/ 目录下发生缓存文件积压 可能原因:同一时间同一客户端下向两个监控目录mv文件:或同一时间多个客户端向服务端上传文件 2.清空../fl ...
- C++逗号表达式
c++中,逗号表达式的结果是最右边表达式的值
- Liberty glance 新功能 healthcheck
oslo.middleware‘s healthcheck http://specs.openstack.org/openstack/oslo-specs/specs/kilo/oslo-middle ...
- db2数据导出导入del与ixf格式区别
之前做数据迁移的时候遇到乱码的一些坑,总结一下. 一般导入导出: db2 export to /home/xxxx.del of del select * from tablename db2 im ...
- c# 查找一个字符串在另一个字符串出现的次数
方法一: string test = "FF FF FF FF 01 00 82 00 00 A2 00 00 FB 07 FF FF FF FF 01 00 82 00 00 A2 00 ...
- Tensorflow中的命名空间scope
1.name_scope 在tensorflow中有两种声明变量的方式,tf.get_variable()和tf.Variable(). name_scope对于tf.get_variable()无效 ...
- 深入剖析Redis主从复制
[http://sofar.blog.51cto.com/353572/1413024/] [Redis 主从复制的内部协议和机制] 一.主从概述 Redis 支持 Master-Slave( ...