目标跟踪的kalman滤波器介绍


  Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为:

  对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。

有何问题?


  上面是大部分的做法,包括opencv都是如此实现的。但是,上面所述的使用方法也存在一定的问题。通常的监控场景都存在景深,一般而言,相机俯角不会太大(通常小于30度),那么在视频中同一个人在近处会比远处大很多,同样的其速度也会大很多(这里也假设目标真实世界中是匀速运动)。比如近端1个像素代表5mm,那么在远端则可能代表10mm,那人的大小和速度在近端都要大1倍。这样表现出来的现象就是对从近向远运动的目标,其输出的大小比实际大小大,位置会稍微超前;反之,从远向近运动的目标的输出状态大小则比实际大小小,位置会滞后。

如何解决?


  通常见过一种做法,是把目标状态向量扩展为(x,y,w,h,dx,dy,ax,ay,dw,dh),其中ax,ay表示目标加速度,dw,dh表示目标大小的变化速度,相当于假定了目标在视频中是匀变速运动,且其宽高也在匀速变化。但是实际测试来看,该做法效果一般,并不能有效解决上述问题,目前原因不是很明确,估计是由于成像景深并不能满足上面的假设(即目标匀变速运动,宽高匀速变化这一假设)。

  另一种有效的方法是把图像中的目标状态转换到真实状态,即是从图像坐标系映射到世界坐标系。在视频中目标任意一个确定状态(x,y,w,h)都可以唯一对应到真实世界中的(x1,y1,w1,h1),那么在真实世界中,目标通常是满足宽高不变,匀速运动的假设条件的,那么就可以使用kalman滤波器,最终只要将结构反映射回图像坐标系即可。  

  当然,需要做这样的映射,就必须要确定相机的架设参数,包括高度,俯角和焦距。架设固定后,高度可直接给出,焦距和俯角可以在此基础上通过视频标定计算出。另外一种情况是双目/多目成像,有2个或多个相机同时成像就可以直接实现目标在坐标系的转换,这一点是当时在几篇论文上看到的,实际没这么做过。

  对于上面的视频标定,有时候可能显得过于麻烦,且计算也没那么方便,这时我们可以退一步来考虑,基于前面的假设,可以确定只要目标在同一种度量下,目标的大小和速度也会保持不变,那就可以简单点把图像中的目标都映射到图像同一位置后再进行kalman滤波,做法和映射到世界坐标系一样,但是该方法的标定就更为简单了,只要分别标出一个近景远景框即可,完全不需要理会相机架设参数。

  当时的实验结果来看,采用近景远景框标定,只要标定准确,上述做法能完全解决直接在图像中使用kalman滤波的问题。

运动目标跟踪中kalman滤波器的使用的更多相关文章

  1. 【计算机视觉】基于Kalman滤波器的进行物体的跟踪

    预估器 我们希望能够最大限度地使用測量结果来预计移动物体的运动. 所以,多个測量的累积能够让我们检測出不受噪声影响的部分观測轨迹. 一个关键的附加要素即此移动物体运动的模型. 有了这个模型,我们不仅能 ...

  2. Kalman滤波器原理和实现

    Kalman滤波器原理和实现 kalman filter Kalman滤波器的直观理解[1] 假设我们要测量一个房间下一刻钟的温度.据经验判断,房间内的温度不可能短时大幅度变化,也就是说可以依经验认为 ...

  3. Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用

    摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...

  4. Kalman滤波器从原理到实现

    Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than the ...

  5. 终于成功仿了一次Kalman滤波器

    终于成功仿了一次Kalman滤波器 首先是测试了从网上down的一段代码 % KALMANF - updates a system state vector estimate based upon a ...

  6. 关于视觉跟踪中评价标准的相关记录(The Evaluation of Visual Tracking Results on OTB-100 Dataset)

    关于视觉跟踪中评价标准的相关记录(The Evaluation of Visual Tracking Results on OTB-100 Dataset) 2018-01-22  21:49:17 ...

  7. 运动目标检测中基于HSV空间的阴影去除算法

    在运动目标检测中,常常会出现由于光线被遮挡,或场景其他物体的遮挡,在目标附近或场景里出现阴影,阴影的出现对后期目标的正确分割与处理带了很大的不便.如今,国内外已有不少文献来研究这个问题,并且提出了各种 ...

  8. CVE-2020-0668-Windows服务跟踪中的普通特权升级错误

    CVE-2020-0668-Windows服务跟踪中的普通特权升级错误 在这里中,我将讨论在Windows Service跟踪中发现的任意文件移动漏洞.从我的测试来看,它影响了从Vista到10的所有 ...

  9. Opencv-Python项目(1) | 基于meanshiftT算法的运动目标跟踪技术学习

    目标跟踪(object tracking)就是在连续的视频序列中,建立所要跟踪物体的位置关系,得到物体完整的运动轨迹. 目标跟踪分为单目标跟踪和多目标跟踪.本文如无特别指出,均指单目标跟踪. 通常的做 ...

随机推荐

  1. $百度应用引擎BAE的使用与应用部署

    百度应用引擎(BAE)是百度推出的网络应用开发平台,开发者使用BAE不需要进行服务器的配置.维护等繁琐的工作,也不需要进行域名的申请.备案等工作,而只需要上传自己的WEB应用即可在公网上访问.使用及部 ...

  2. $Java正则表达式基础整理

    (一)正则表达式及语法简介 String类使用正则表达式的几个方法: 正则表达式支持的合法字符: 特殊字符: 预定义字符: 方括号表达式: 圆括号表达式:用于将多个表达式组成一个子表达式,可以使用或运 ...

  3. flex 实现图片播放 方案二 把临时3张图片预加载放入内存

    该方案,是预加载:前一张,当前,下一张图片,一共3张图片放入内存中.这样对内存的消耗可以非常小,加载之后的图片就释放内存. 下面示例一个是类ImagePlayers,一个是index.mxml pac ...

  4. PHP领域类型Java中ibatis的API

    最近公司技术调整,要把java用php换掉,其中java主要的工作就是查询数据库,并返回json,ORM用的是ibatis,主要用到了Object映射和动态SQL,组员们用的都挺6,转到PHP后,发现 ...

  5. qt的udp的初步使用(转)

    该程序实现的功能是:局域网内,每个用户登录到聊天软件,则软件界面的右端可以显示在线用户列表,分别显示的是用户名,主机名,ip地址.软件左边那大块是聊天内容显示界面,这里局域网相当于qq中的qq群,即群 ...

  6. 【Head First Servlets and JSP】笔记6:什么是响应首部 & 快速搭建一个简单的测试环境

    搭建简单的测试环境 什么是响应首部 最简单的响应首部——Content-Type 设置响应首部 请求重定向与响应首部 在浏览器中查看Response Headers 1.先快速搭建一个简单的测试环境, ...

  7. php数组函数-array_pad()

    array_pad()函数向一个数组插入带有指定值的指定数量的元素. array_pad(array,size,value); array:必需.规定数组 size:必需.指定的长度.正数则填补到右侧 ...

  8. Vue.js学习笔记 第三篇 条件渲染

    条件选择 条件选择的用法和其他语言类似,一个例子就能解决所有问题 <!DOCTYPE html> <html> <head> <meta charset=&q ...

  9. 剑指Offer——圆圈中最后剩下的数(约瑟夫环)

    Question 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后, ...

  10. PAT1023. Have Fun with Numbers (20)

    #include <iostream> #include <map> #include <algorithm> using namespace std; strin ...