嘟嘟嘟

题目翻译:有n个数,m个限制条件。每一个限制条件形如:1.x y gt c:表示ax + ax+1 + … +ay > c。2.x y It c:表示ax + ax+1 + …… +ay < c。有解输出“lamentable kingdom”,否则输出“successful conspiracy”。

对于每一个限制条件,用前缀和的思想,就变成了Sy - Sx-1 > c 和 Sy - Sx-1 < c。于是就是一个典型的差分约束模型。不过差分约束必须满足 ’<=',于是<x就转换成<= x - 1,> x就转换成>= x + 1。

建好图后跑spfa判负环即可。

但还有一个问题,就是应该从哪个节点开始?思考一下,我们只用判断图中是否存在负环,因此从那一个点开始都行,那么不放建一个超级源点,向所有点连一条边权为0的边。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = ans * + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, m;
char s[];
struct Edge
{
int to, w, nxt;
}e[maxn << ];
int head[maxn], ecnt = ;
void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){y, w, head[x]};
head[x] = ecnt;
} bool in[maxn];
int dis[maxn], cnt[maxn];
bool spfa(int s)
{
Mem(in, ); Mem(cnt, );
Mem(dis, 0x3f); dis[s] = ;
queue<int> q; q.push(s);
while(!q.empty())
{
int now = q.front(); q.pop();
in[now] = ;
for(int i = head[now]; i; i = e[i].nxt)
{
if(dis[e[i].to] > dis[now] + e[i].w)
{
dis[e[i].to] = dis[now] + e[i].w;
if(!in[e[i].to])
{
in[e[i].to] = ;
if(++cnt[e[i].to] > n + ) return ;
q.push(e[i].to);
}
}
}
}
return ;
} void init()
{
Mem(head, );
ecnt = ;
} int main()
{
while(scanf("%d", &n) && n)
{
m = read();
init();
for(int i = ; i <= m; ++i)
{
int x = read() + , y = read();
scanf("%s", s); int t = read();
if(s[] == 'g') addEdge(x + y, x - , - t - );
else addEdge(x - , x + y, t - );
}
for(int i = ; i <= n + ; ++i) addEdge(, i, );
printf("%s\n", spfa() ? "lamentable kingdom" : "successful conspiracy");
}
return ;
}

UVA515 King的更多相关文章

  1. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  2. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  3. King's Quest —— POJ1904(ZOJ2470)Tarjan缩点

    King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...

  4. 【状压DP】bzoj1087 互不侵犯king

    一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...

  5. ZOJ 2334 Monkey King

    并查集+左偏树.....合并的时候用左偏树,合并结束后吧父结点全部定成树的根节点,保证任意两个猴子都可以通过Find找到最厉害的猴子                       Monkey King ...

  6. ACM ICPC 2015 Moscow Subregional Russia, Moscow, Dolgoprudny, October, 18, 2015 K. King’s Rout

    K. King's Rout time limit per test 4 seconds memory limit per test 512 megabytes input standard inpu ...

  7. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  8. POJ1364 King

    Description Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen p ...

  9. [Educational Codeforces Round 16]A. King Moves

    [Educational Codeforces Round 16]A. King Moves 试题描述 The only king stands on the standard chess board ...

随机推荐

  1. TCP/IP协议分为哪四层,具体作用是什么。

    TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求.这4层分别为: 应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP).文件传输协议(FTP).网络远 ...

  2. pg定时任务创建、查询与删除

    select dbms_job.submit('clean_lcs_staff_cm_relation_job', 'select clean_lcs_staff_cm_relation();','0 ...

  3. Zabbix的安装(源码安装)

    zabbix3.0完全安装 安装zabbix首先需要安装ltmp(lnmp),这里的t是指tengine(taobao的nginx版本),安装教程见 http://www.ltmp.cc 安装的时候P ...

  4. 这真的该用try-catch吗?

    前言 我有个技能,就是把“我”说的听起来特别像“老子”. 以前是小喽啰的时候,会跟领导说“我!不加班.”,听起来就像“老子不加班!”一样.到最后发现,我确实没有把计划内的工作拖到需要加班才能完成,这个 ...

  5. elasticSearch请求流程图

  6. 学习安卓开发过程中遇到关于R.Java文件的问题

    在学习安卓开发过程时,遇到R.java生成问题,总结几个方法解决. 1.首先必须做的就是检查代码的正确性,存在错误的代码,不编译生成R.java 2.右键点项目,选择 Android Tools -& ...

  7. 1229:密码截获----java

    题目描述 Catcher是MCA国的情报员,他工作时发现敌国会用一些对称的密码 进行通信,比如像这些ABBA,ABA,A,123321,但是他们有时会在开始或结束时加入一些无关的字符以防止别国破解.比 ...

  8. springBoot 中redis 注解缓存的使用

    1,首先在启动类上加上 @EnableCaching 这个注解 在查询类的controller,或service ,dao 中方法上加 @Cacheable 更新或修改方法上加 @CachePut 注 ...

  9. 破解jar包5步搞定,jira7.9.2操作成功,附github代码库

    1,从要破解的程序中拷贝.jar包文件,运行1_jar.sh将其解压.以jira7.9.2为例: $install_dir\JIRA\atlassian-jira\WEB-INF\lib\atlass ...

  10. IDEA安装及破解永久版教程————鹏鹏

    ---恢复内容开始--- 首先我们先来介绍下什么是IDEA? IDEA 全称 IntelliJ IDEA,是java编程语言开发的集成环境.IntelliJ在业界被公认为最好的java开发工具之一,尤 ...