#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause") #else #define D_e_Line ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 30007;
const int M = 300007; int S, T;
int n, m; struct Edge{
int nxt, pre, w;
}e[M];
int head[N], cntEdge = 1; // why 1, why not 0 ? because of S ?
inline void add(int u, int v, int w){
e[++cntEdge] = (Edge){head[u], v, w}, head[u] = cntEdge;
}
inline void Add(int u, int v, int w){
add(u, v, w);
add(v, u, 0);
} int q[N],h[N];
inline bool BFS(){
int t = 0, w = 1;
Fill(h, -1);
h[S] = 0, q[0] = S;
while(t != w){
int u = q[t++];
for(register int i = head[u]; i; i =e[i].nxt){
int v = e[i].pre;
if(e[i].w && h[v] == -1){
h[v] = h[u] + 1;
q[w++] = e[i].pre;
}
}
}
return h[T] != -1;
}
inline int DFS(int u, int f){
if(u == T) return f;
int w, used = 0;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(h[v] == h[u] + 1){
w = DFS(v, Min(f - used, e[i].w));
e[i].w -= w, e[i^1].w += w;
used += w;
if(used == f) return f;
}
}
if(!used) h[u] = -1;
return used;
}
inline int Dinic(){
int sum = 0;
while(BFS()){
sum += DFS(S, 0x7fffffff);
}
return sum;
} int dx[5] = {-1, 1, 0, 0, 0}, dy[5] = {0, 0, -1, 1, 0}; // (0, 0) is also useful in this problem
inline int id(int x, int y){
return (x - 1) * m + y;
}
inline void Connect(int x, int y){
R(i, 0, 4){
int fx = x + dx[i], fy = y + dy[i];
if(fx < 1 || fy < 1 || fx > n || fy >m) continue;
Add(n * m + id(fx, fy), id(x, y), 0x3f3f3f3f);
Add(id(x, y), n * m * 2 + id(fx, fy), 0x3f3f3f3f);
}
} int main(){
io >> n >> m;
T = n * m *3 + 1;
long long sum = 0;
int val;
R(i,1,n){
R(j,1,m){
io >> val;
Add(S, id(i, j), val);
sum += val;
}
}
R(i,1,n){
R(j,1,m){
io >> val;
Add(id(i, j), T, val);
sum += val;
}
}
R(i,1,n){
R(j,1,m){
io >> val;
Add(S, n * m + id(i, j), val);
sum += val;
}
} R(i,1,n){
R(j,1,m){
io >> val;
Add(n * m * 2 + id(i, j), T, val);
sum += val;
}
}
R(i,1,n){
R(j,1,m){
Connect(i, j);
}
} printf("%lld", sum - Dinic()); return 0;
}

BZOJ3894/LuoguP4313 文理分科 (最小割)的更多相关文章

  1. 【BZOJ3894】文理分科 最小割

    [BZOJ3894]文理分科 Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格 ...

  2. BZOJ3894文理分科——最小割

    题目描述  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从 ...

  3. 【BZOJ3894】【Luogu3358】文理分科 - 最小割多选一模型

    链接Click Here 这个题就是个板子的最小割多选一模型啦\(QwQ\),这里介绍一种通用的解法. 抛开组合收益不谈,这个题就是一个简单的最小割模型.我们只需要建出来这样一张图,在上面跑最小割,割 ...

  4. P4313 文理分科 最小割

    $ \color{#0066ff}{ 题目描述 }$ 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格 ...

  5. BZOJ 3894: 文理分科 [最小割]

    3894: 文理分科 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 674  Solved: 392[Submit][Status][Discuss] ...

  6. BZOJ 3894 Luogu P4313 文理分科 (最小割)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894 (luogu) https://www.luogu.org/pro ...

  7. [BZOJ3894]文理分科(最小割)

    (1) 对每个位置建一个点F1,S向这个点连art[i][j]的边,这个点向T连science[i][j]的边. (2) 对每个位置再建一个点F2,S向这个点连same_art[i][j]的边,这个点 ...

  8. 【BZOJ3894】文理分科(最小割)

    [BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...

  9. 【bzoj3894】文理分科 网路流

    [bzoj3894]文理分科 2015年3月25日3,4002 Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班 ...

随机推荐

  1. ML第4周学习小结

    本周收获 总结一下本周学习内容: 1.学习了<深入浅出Pandas>的第五章:Pandas高级操作的两个内容 添加修改数据 高级过滤 我的博客链接: Pandas:添加修改.高级过滤 2. ...

  2. 零成本搭建个人博客之图床和cdn加速

    本文属于零成本搭建个人博客指南系列 为什么要使用图床 博客文章中的图片资源文件一般采用本地相对/绝对路径引用,或者使用图床通过外链进行引用展示.本地引用的弊端我认为在于: 图片和博客放在同一个代码托管 ...

  3. 前端 跨站脚本(XSS)攻击的一些问题,解决<script>alert('gansir')</script>

    问题1:跨站脚本(XSS)的一些问题,主要漏洞证据: <script>alert('gansir')</script>,对于这个问题怎么解决? (测试应当考虑的前端基础攻击问题 ...

  4. 安装ImageMagick7.1库以及php的Imagick扩展

    由于ImageMagick7以下不支持heic等图片格式,所以重新安装了ImageMagick7.1版本支持heic格式,并写此文章记录一下. 如果安装过程中遇到一些未知的错误,https://ima ...

  5. kali 漏洞扫描

    前言 漏洞扫描器是一种能够自动在计算机.信息系统.网络及应用软件中寻找和发现安全弱点的程序.它通过网络对目录系统进行探测,向目标系统发送数据,并将反馈数据与自带的漏洞特征库进行匹配,进而列举目标系统上 ...

  6. bat-Office激活命令

    激活命令 cd C:\Program Files\Microsoft Office\Office16 //然后目录对的话,该目录下面应该有个 OSPP.VBS cscript ospp.vbs /ds ...

  7. W10修改被改的默认打开文本方式

    今天不小心给默认方式打开点错了,身为处女座的我有洁癖非要非恢复过来,这是找到的 原文操作出处:win10系统如何还原文件默认打开方式?win10设置文件默认打开方式的方法 -Win7系统之家 (win ...

  8. 更强的 JsonPath 兼容性及性能测试之2022版(Snack3,Fastjson2,jayway.jsonpath)

    2022年了,重新做了一份json path的兼容性与性能测试.三个市面上流行框架比较性测试. 免责声明:可能测试得方式不对而造成不科学的结果(另外,机器不同结果会有不同),可以留言指出来.以下测试数 ...

  9. 全国土壤阳离子交换量CEC空间分布数据

    数据下载链接:百度云下载链接​ 土壤阳离子交换量,简称CEC,是指土壤胶体所能吸附各种阳离子的总量.土壤阳离子交换量 cation exchange capacity 即CEC 是指土壤胶体所能吸附各 ...

  10. ReentrantLock 公平锁源码 第0篇

    ReentrantLock 0 关于ReentrantLock的文章其实写过的,但当时写的感觉不是太好,就给删了,那为啥又要再写一遍呢 最近闲着没事想自己写个锁,然后整了几天出来后不是跑丢线程就是和没 ...