【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流
题目描述
凡是考智商的题里面总会有这么一种消除游戏。不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏。我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x2-y2是一个完全平方数z2,并且y与z互质,那么就可以将x和y连起来并且将它们一起消除,同时得到x+y点分数。那么过关的要求就是,消除的数对尽可能多的前提下,得到足够的分数。快动手动笔算一算吧。
输入
只有一行,两个整数,分别表示a,b。
输出
两个数,可以消去的对数,及在此基础上能得到的最大分数。
样例输入
1 15
样例输出
2 34
题解
拆点+最大费用最大流
分析题目要求,发现x和y一定是互质的。
对于i和j,如果i和j符合题目要求,那么加i->j'和j->i',容量为1,费用为i+j的两条边。
对于所有的i,加S->i和i'->T,容量为1,费用为0的边。
然后跑最大费用最大流,答案为maxflow/2和mincost/2。
这样建图看起来是理所当然的。好像有什么问题?
会不会出现a1->a2',a2->a3',a3->a1'的情况?以及会不会TLE?
自己写一个程序试了一下,测试结果:不存在a1->a2',a2->a3',a3->a1'的情况,满足条件的点对最多只有316*2对。
然后跑一下最大费用最大流就AC了。
方法:先将cost取相反数,然后跑最小费用最大流,再对费用取相反数。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[2010] , to[100010] , val[100010] , cost[100010] , next[100010] , cnt = 1 , dis[2010] , from[2010] , pre[2010] , s , t;
int gcd(int x , int y)
{
return y ? gcd(y , x % y) : x;
}
void add(int x , int y , int z , int c)
{
to[++cnt] = y , val[cnt] = z , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int i , x;
memset(from , -1 , sizeof(from));
memset(dis , 0x7f , sizeof(dis));
dis[s] = 0;
q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int main()
{
int n , a , b , i , j , tmp , maxflow = 0 , mincost = 0 , k;
scanf("%d%d" , &a , &b);
n = b - a + 1 , s = 0 , t = 2 * n + 1;
for(i = a ; i <= b ; i ++ )
{
for(j = a ; j < i ; j ++ )
{
tmp = (int)round(sqrt(i * i - j * j));
if(tmp * tmp == i * i - j * j && gcd(j , tmp) == 1)
add(i - a + 1 , j - a + 1 + n , 1 , - i - j) , add(j - a + 1 , i - a + 1 + n , 1 , - i - j);
}
}
for(i = 1 ; i <= n ; i ++ ) add(s , i , 1 , 0) , add(i + n , t , 1 , 0);
while(spfa())
{
k = 0x7f7f7f7f;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
maxflow += k , mincost += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
printf("%d %d\n" , maxflow / 2 , -mincost / 2);
return 0;
}
【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流的更多相关文章
- BZOJ_2661_[BeiJing wc2012]连连看_费用流
BZOJ_2661_[BeiJing wc2012]连连看_费用流 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规 ...
- 【BZOJ2661】[BeiJing wc2012]连连看 最大费用流
[BZOJ2661][BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给 ...
- [BZOJ2661][BeiJing wc2012]连连看 费用流
2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1349 Solved: 577[Submit][ ...
- BZOJ2661: [BeiJing wc2012]连连看
2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 483 Solved: 200[Submit][S ...
- 【费用流】bzoj2661 [BeiJing wc2012]连连看
将每个数拆点,互相连边,然后满足条件的数对之间互相连边,跑最大费用流,答案是流量和费用分别除以2. 一定要i->j.j->i都连上,否则可能会出现一个数在一边被选择了,在另一边的另一个匹配 ...
- BZOJ 2661: [BeiJing wc2012]连连看 费用流
2661: [BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭 ...
- [BeiJing wc2012]连连看(建模,最小费用最大流)
前言 突然发现自己在图论①被dalao吊着打... Solution 看到数据范围1000,感觉可以直接枚举连边,然后新建两个点就好了. 注意要拆点,不然可能会死循环(过来人) 代码实现 #inclu ...
- [BeiJing wc2012]连连看
题目链接 费用流板子+拆点 #include <bits/stdc++.h> using namespace std; typedef long long ll; inline int r ...
- bzoj 2661: [BeiJing wc2012]连连看
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...
随机推荐
- Java基础题:集合、String、性能、线程
转载自:Java基础题 https://yq.aliyun.com/articles/601786?utm_content=m_1000001149
- jdbc学习笔记03
作业: 1. 学生表(id,age,name) 2. 插入学生 3. 修改学生 4. 删除学生 5. 查询学生 JavaBean 俗称简单的Java对象 javaBean满足以下三点 1.私有属性 2 ...
- 大数据开发从入门小白到删库跑路(一)- 获取Hadoop
Hadoop是一个可以通过相对简单编程模型实现跨多台计算机集群分布式处理大型数据集的框架.它不是依赖于高额成本的硬件可靠性来提供高可用性,Hadoop的设计能从单个服务器扩展到数千台机器,每个机器提供 ...
- thinkphp发送邮箱(以thinkphp5作为示例)。
第一步:设置我们的邮箱客户端授权码 第二步:下载相应的第三方类库(我这里用的PHPemail) 这是phpemailde 第三方类库的文件下载地址:https://github.com/PHPMail ...
- 21.1 XMLHttpRequest 对象【JavaScript高级程序设计第三版】
IE5 是第一款引入XHR 对象的浏览器.在IE5 中,XHR 对象是通过MSXML 库中的一个ActiveX对象实现的.因此,在IE 中可能会遇到三种不同版本的XHR 对象,即MSXML2.XMLH ...
- python中的字符串(str)操作
字符串是python中数据类型.一般就单引号(‘’)或双引号(“”)引起来的内容就是字符串. 例如:下面两个都是定义字符串 str1 = "hello world" str2 = ...
- 用filter()筛选出素数
'use strict'; function get_primes(arr) { return arr.filter(function isPrime(number) { if (typeof num ...
- PHP.42-TP框架商城应用实例-后台17-商品属性3-商品分类的修改与删除
商品分类的修改 1.改表单Goods/edit.html,加下拉框 2.因为商品属性修改涉及商品属性表goods_attr{id,attr_value,attr_id,goods_id}与属性表att ...
- .NET基础知识之七——索引器
索引器是什么?有什么作用?索引器允许类的实例以访问数组的形式来访问对象里面的属性.如我们经常可以看到类似于dr["name"]="test",或者 ...
- [转] 前端开发利器--Brackets 的七种武器和旁门左道
转自:http://www.jianshu.com/p/ff7798aa4548 Brackets是Adobe开发的web编辑器,是一款免费开源.多平台支持的软件,并在于GitHub上维护.Brack ...