题目描述

凡是考智商的题里面总会有这么一种消除游戏。不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏。我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x2-y2是一个完全平方数z2,并且y与z互质,那么就可以将x和y连起来并且将它们一起消除,同时得到x+y点分数。那么过关的要求就是,消除的数对尽可能多的前提下,得到足够的分数。快动手动笔算一算吧。

输入

只有一行,两个整数,分别表示a,b。

输出

两个数,可以消去的对数,及在此基础上能得到的最大分数。

样例输入

1 15

样例输出

2 34


题解

拆点+最大费用最大流

分析题目要求,发现x和y一定是互质的。

对于i和j,如果i和j符合题目要求,那么加i->j'和j->i',容量为1,费用为i+j的两条边。

对于所有的i,加S->i和i'->T,容量为1,费用为0的边。

然后跑最大费用最大流,答案为maxflow/2和mincost/2。

这样建图看起来是理所当然的。好像有什么问题?

会不会出现a1->a2',a2->a3',a3->a1'的情况?以及会不会TLE?

自己写一个程序试了一下,测试结果:不存在a1->a2',a2->a3',a3->a1'的情况,满足条件的点对最多只有316*2对。

然后跑一下最大费用最大流就AC了。

方法:先将cost取相反数,然后跑最小费用最大流,再对费用取相反数。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[2010] , to[100010] , val[100010] , cost[100010] , next[100010] , cnt = 1 , dis[2010] , from[2010] , pre[2010] , s , t;
int gcd(int x , int y)
{
return y ? gcd(y , x % y) : x;
}
void add(int x , int y , int z , int c)
{
to[++cnt] = y , val[cnt] = z , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int i , x;
memset(from , -1 , sizeof(from));
memset(dis , 0x7f , sizeof(dis));
dis[s] = 0;
q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int main()
{
int n , a , b , i , j , tmp , maxflow = 0 , mincost = 0 , k;
scanf("%d%d" , &a , &b);
n = b - a + 1 , s = 0 , t = 2 * n + 1;
for(i = a ; i <= b ; i ++ )
{
for(j = a ; j < i ; j ++ )
{
tmp = (int)round(sqrt(i * i - j * j));
if(tmp * tmp == i * i - j * j && gcd(j , tmp) == 1)
add(i - a + 1 , j - a + 1 + n , 1 , - i - j) , add(j - a + 1 , i - a + 1 + n , 1 , - i - j);
}
}
for(i = 1 ; i <= n ; i ++ ) add(s , i , 1 , 0) , add(i + n , t , 1 , 0);
while(spfa())
{
k = 0x7f7f7f7f;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
maxflow += k , mincost += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
printf("%d %d\n" , maxflow / 2 , -mincost / 2);
return 0;
}

【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流的更多相关文章

  1. BZOJ_2661_[BeiJing wc2012]连连看_费用流

    BZOJ_2661_[BeiJing wc2012]连连看_费用流 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规 ...

  2. 【BZOJ2661】[BeiJing wc2012]连连看 最大费用流

    [BZOJ2661][BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给 ...

  3. [BZOJ2661][BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1349  Solved: 577[Submit][ ...

  4. BZOJ2661: [BeiJing wc2012]连连看

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 483  Solved: 200[Submit][S ...

  5. 【费用流】bzoj2661 [BeiJing wc2012]连连看

    将每个数拆点,互相连边,然后满足条件的数对之间互相连边,跑最大费用流,答案是流量和费用分别除以2. 一定要i->j.j->i都连上,否则可能会出现一个数在一边被选择了,在另一边的另一个匹配 ...

  6. BZOJ 2661: [BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭 ...

  7. [BeiJing wc2012]连连看(建模,最小费用最大流)

    前言 突然发现自己在图论①被dalao吊着打... Solution 看到数据范围1000,感觉可以直接枚举连边,然后新建两个点就好了. 注意要拆点,不然可能会死循环(过来人) 代码实现 #inclu ...

  8. [BeiJing wc2012]连连看

    题目链接 费用流板子+拆点 #include <bits/stdc++.h> using namespace std; typedef long long ll; inline int r ...

  9. bzoj 2661: [BeiJing wc2012]连连看

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...

随机推荐

  1. 通过Ambari2.2.2部署HDP大数据服务

    node1 amari-server   node2 amari-agent namenode1,datanode,resourcemanager,zk node3 amari-agent namen ...

  2. linux系统之-vi编辑器

    在linux系统使用中,掌握熟练的vi编辑器,可以提高linux工作效率.那么vi编辑器的使用方法有哪些呢? vi编辑器可在绝大部分linux发行版中使用. Vi编辑器的作用:创建或修改文件:维护li ...

  3. vue组件的基本知识点

    1. 组件中 is 的特性: 有些 HTML 元素,诸如 <ul>.<ol>.<table> 和 <select>,对于哪些元素可以出现在其内部是有严格 ...

  4. SSM框架搭建步骤

    首先要导入相关的jar包(spring\spring-core\spring-jdbc\spring-aop\spring-context\spring-webmvc\junit\commons-la ...

  5. flask过滤器

    过滤器的本质就是函数.有时候我们不仅仅只是需要输出变量的值,我们还需要修改变量的显示,甚至格式化.运算等等,而在模板中是不能直接调用 Python 中的某些方法,那么这就用到了过滤器. 过滤器的使用方 ...

  6. 量化交易之 tushare

    作为一名老股民,我对金融市场一直都保持长期的关注. 最近我大量接触量化交易相关的一切,发现市场力量还是蛮强大的,6年前的很多设想现在已经彻底变成现实,不得不承认市场从来不会等任何人.想好就要马上行动, ...

  7. ecshop 全系列版本网站漏洞 远程代码执行sql注入漏洞

    ecshop漏洞于2018年9月12日被某安全组织披露爆出,该漏洞受影响范围较广,ecshop2.73版本以及目前最新的3.0.3.6.4.0版本都受此次ecshop漏洞的影响,主要漏洞是利用远程代码 ...

  8. 332. Reconstruct Itinerary

    class Solution { public: vector<string> path; unordered_map<string, multiset<string>& ...

  9. 20145202马超《网络对抗》Exp4 恶意代码分析

    20145202马超<网络对抗>Exp4 恶意代码分析 1.实验后回答问题 (1)总结一下监控一个系统通常需要监控什么.用什么来监控. 虽然这次试验的软件很好用,我承认,但是他拖慢了电脑的 ...

  10. Lambda方式左连接有Linq方式左连接

    网上查到的直接使用Join+DefaultIfEmpty的方式是错误的,实际生成SQL是两表先内联接,然后再LEFT JOIN.经过查证,参考资料,最终得到如下两种方式的左连接写法: public v ...