【luogu P1962 斐波那契数列】 题解
题目链接:https://www.luogu.org/problemnew/show/P1962
给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
struct Matrix{
long long m[][];
}A,E,ans;
long long n,k, mod = ;
Matrix mul(Matrix A,Matrix B)
{
Matrix C;
for(int i = ; i <= ; i++)
for(int j = ; j <= ; j++)
{
C.m[i][j] = ;
for(int k = ; k <= ; k++)
C.m[i][j] = (C.m[i][j]+(A.m[i][k]*B.m[k][j]))%mod;
}
return C;
}
Matrix fast(Matrix A, long long k)
{
Matrix S = E;
while(k)
{
if(k&) S = mul(S,A);
A = mul(A,A);
k = k>>;
}
return S;
}
int main(){ scanf("%lld",&k); E.m[][] = ;
E.m[][] = ;
A.m[][] = ;
A.m[][] = ;
A.m[][] = ;
ans = fast(A,k); printf("%lld ",(ans.m[][])%mod);
return ;
}
【luogu P1962 斐波那契数列】 题解的更多相关文章
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- P1962 斐波那契数列-题解(矩阵乘法扩展)
https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
随机推荐
- matlab安装过程的被要求的配置程序
顺序是这样的: 网址的顺序是这样的: 1. http://cn.mathworks.com/support/compilers/R2015b/index.html?sec=win64&s_ci ...
- 数据挖掘:基于Spark+HanLP实现影视评论关键词抽取(1)
1. 背景 近日项目要求基于爬取的影视评论信息,抽取影视的关键字信息.考虑到影视评论数据量较大,因此采用Spark处理框架.关键词提取的处理主要包含分词+算法抽取两部分.目前分词工具包较为主流的,包括 ...
- 用 Python 构建 web 应用
用 Python 构建 web 应用 如果说仅仅要用 Python 构建 web 应用,可以将 socket 连接.HTTP 原始请求和响应格式等涉及网络基础的东西交给现成的库来实现,只需要专注于 w ...
- NBUT 1107——盒子游戏——————【博弈类】
盒子游戏 Time Limit:1000MS Memory Limit:65535KB 64bit IO Format: Submit Status Practice NBUT 110 ...
- js event事件绑定的方法
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 【XShell】xshell 中“快速命令集”的使用
突然看到朋友的xshell比我多一个按钮,且一点,哈哈哈 ,实现了很炫酷的功能,耐不住好奇,问了一句,原来是快速命令集! 1.选择快速命令集(两种方法a&b) a:文件 > 属性 > ...
- Apache-Maven 的安装及配置
一. 下载 没有 Maven 的朋友可以去 Apache 的官网下载一个 Maven, Apache-Maven 官网下载 : https://maven.apache.org/download.cg ...
- html5 填表 表单 input output 与表单验证
1.<output> Js计算结果 <form oninput="res.value = num1.valueAsNumber*num2.valueAsNumber ...
- CocoaPods管理的项目移植到别人电脑后找不到头文件
CocoaPods管理的项目移植到别人电脑后找不到头文件 在TARGETS -> Search Paths -> User Header Search Paths 中 写入 ${SRCRO ...
- sketchup 与 ArcGIS 10 的交互(转)
来自:http://blog.csdn.net/kikitamoon/article/details/9036347 许多用户在 ArcGIS 9.2 时代习惯于使用 Sketchup 插件,但是,9 ...