[基本操作]决策单调性优化dp
一般的式子都是 $f_i = max\{g_j + w_{(i,j)}\}$
然后这个 $w$ 满足决策单调性,也就是对于任意 $i < j$ ,$best_i \leq best_j$
这样就会有两种优化方式
1.$w_{(i,j)}$ 可以快速求
例如:NOI 2009 诗人小 G
题里给了你 $L,P$ 和单调递增的 $s$ 数组,然后 $f_i = min \{ f_j + |s_i-s_j-L-1|^P \} \space (j < i)$
可以发现以一个点为最优决策的点是一段区间
我们可以用单调栈维护这个区间,具体地,在栈里存一个三元组 $(l,r,x)$ 表示 $[l,r]$ 的最优决策都在 $x$
一开始栈里只有一个区间 $(1,n,0)$,考虑对每次加入的 $i$,更新这个栈
1) 如果 $i$ 可以转移到当前的区间 $[l,r]$,且 $i$ 比 $x$ 优,我们发现 $i$ 完爆 $x$ ,没理由留着 $x$
2) 不管 $i$ 有没有完爆 $x$,因为决策单调性,$i$ 可以影响后面一段区间($i$ 从左到右,所以当前的 $i$ 显然在 $x$ 右边,有可能成为后面某段区间的最优决策),我们在 $[min(L,i+1),R]$ 这段区间上二分找出一个位置 $p$ 满足 $p$ 以前 $x$ 最优,$p$ 及以后 $i$ 最优,把 $(p,n,i)$ 加入队列,并把 $(l,r,x)$ 改成 $(l,p-1,x)$(如果不存在 $p$ 就不加)
所以从左到右每次加入一个 $i$ ,更新它的 $f$ 数组,然后把它的贡献加入栈里就可以了
复杂度 $O(nlogn)$
#include<bits/stdc++.h>
#define LL long long
#define DB long double
using namespace std;
inline int read()
{
int x = ,f = ;char ch = getchar();
for(;!isdigit(ch);ch = getchar())if(ch == '-') f = -f;
for(;isdigit(ch);ch = getchar())x = * x + ch - '';
return x * f;
}
const int maxn = ,maxw = ;
int n,l,p;
char s[maxn][maxw];
DB f[maxn];
int sum[maxn],top;
struct Deci
{
int l,r,x;
Deci(){}
Deci(int _l,int _r,int _x){l = _l,r = _r,x = _x;}
}st[maxn];
inline DB calc(int j,int i)
{
DB res = 1.0,cur = 1.0 * abs((sum[i] + i - sum[j] - j - ) - l);
for(int i=;i<=p;i++)res *= cur;
return res;
}
int main()
{
int T = read();
while(T--)
{
n = read(),l = read(),p = read();
int cur = ;
for(int i=;i<=n;i++)
{
scanf("%s",s[i] + );
sum[i] = sum[i - ] + strlen(s[i] + );
}
st[top = ] = Deci(,n,);
for(int i=;i<=n;i++)
{
f[i] = f[st[cur].x] + calc(st[cur].x,i);
while(st[top].l > i && f[i] + calc(i,st[top].l) < f[st[top].x] + calc(st[top].x,st[top].l))top--;
int L = max(i + ,st[top].l),R = st[top].r,ans;
while(L <= R)
{
int mid = (L + R) >> ;
if(f[i] + calc(i,mid) < f[st[top].x] + calc(st[top].x,mid))R = mid - ;
else L = mid + ;
}
st[top].r = L - ;
if(L <= n)st[++top] = Deci(L,n,i);
if(st[cur].r == i)cur++;
}
if(f[n] > 1e18)puts("Too hard to arrange");
else printf("%lld\n",(LL)f[n]);
puts("--------------------");
}
}
2.$w_{(i,j)}$ 不能快速求
例如:Lydsy1712 月赛 Problem D. 小 Q 的书架
把一个数列分成 $k$ 段,最小化 $\sum$ 每一段内的逆序对
$n \leq 40000,k \leq 10$
先吐槽,这个数据范围给我,我绝对不去莫队
区间逆序对好像不是很可算,只能莫队,但这个莫队还是动态查询,所以复杂度非常没有保障
然后 $w_{(i,j)}$ 虽然满足四边形不等式,但复杂度不是很对
可以分治,每次对于一个区间 $[l,r]$ 假设它的最优决策在 $[ql,qr]$ 上
令 mid=(l+r)>>1 ,我们可以暴力扫 $[l,mid]$ 找出它的最优决策点 $x$,然后递归解决 $[l,mid-1],[ql,x]$ 和 $[mid+1,r],[x,qr]$ 这两个子问题
这样做是 $O(nlogn)$ 的,复杂度证明同归并排序
#include<bits/stdc++.h>
#define LL long long
using namespace std;
inline int read()
{
int x = ,f = ;char ch = getchar();
for(;!isdigit(ch);ch = getchar())if(ch == '-') f = -f;
for(;isdigit(ch);ch = getchar())x = * x + ch - '';
return x * f;
}
const int maxn = ;
int n,k;
int c[maxn],a[maxn],f[maxn],g[maxn];
inline int lowbit(int x){return x & (-x);}
inline void add(int x,int v){for(;x <= n;x += lowbit(x))c[x] += v;}
inline int cal(int x){int res = ;for(;x;x -= lowbit(x))res += c[x];return res;}
int nl,nr,ans;
inline void Get(int l,int r)
{
while(nl > l)nl--,ans += cal(a[nl] - ),add(a[nl],);
while(nr < r)nr++,ans += cal(n) - cal(a[nr]),add(a[nr],);
while(nl < l)add(a[nl],-),ans -= cal(a[nl] - ),nl++;
while(nr > r)add(a[nr],-),ans -= cal(n) - cal(a[nr]),nr--;
}
void solve(int l,int r,int L,int R)
{
if(l > r)return;
int mid = (l + r) >> ,x;
for(int i=min(mid,R+);i>L;i--)
{
Get(i,mid);
if(g[i - ] + ans < f[mid])f[mid] = g[i - ] + ans,x = i - ;
}
solve(l,mid - ,L,x);solve(mid + ,r,x,R);
}
int main()
{
n = nr = read();nl = ;
k = read();
for(int i=;i<=n;i++)
{
a[i] = read();
f[i] = f[i - ] + cal(n) - cal(a[i]);
add(a[i],);
}ans = f[n];
for(int i=;i<=k;i++)
{
for(int i=;i<=n;i++)g[i] = f[i],f[i] = 1e9;
solve(,n,,n - );
}
cout<<f[n]<<endl;
}
[基本操作]决策单调性优化dp的更多相关文章
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- 决策单调性优化dp 专题练习
决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队 ...
- BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- 2018.10.14 NOIP训练 猜数游戏(决策单调性优化dp)
传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L ...
- 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)
题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...
随机推荐
- ZOJ 3961 Let's Chat 【水】
题目链接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3961 题意 给出两个人的发消息的记录,然后 如果有两人在连续M天 ...
- 面对 to B 业务该如何构建研发管理体系?
未来离我们越来越近,而过去并未走远,我们发现科技公司2B业务兴起,腾讯认为互联网下半场属于产业互联网,需要进行一次重要的战略升级.它们在国庆节最后一天进行新一轮组织架构调整,最亮眼的就是新成立云与智慧 ...
- vscode使用vue中的v-for提示错误
"vetur.validation.template": false 在设置里面把vetur.validation.template改为false 文件→首选项→设置 搜索vetu ...
- 基于IG的特征评分方法
本文简单介绍了熵.信息增益的概念,以及如何使用信息增益对监督学习的训练样本进行评估,评估每个字段的信息量. 1.熵的介绍 在信息论里面,熵是对不确定性的测量.通俗来讲,熵就是衡量随机变量随 ...
- Django源码剖析
一.Django底层剖析之一次请求到响应的整个流程 As we all know,所有的Web应用,其本质上其实就是一个socket服务端,而用户的浏览器就是一个socket客户端 #!/usr/bi ...
- tcp底层连接过程(c语言)
在用了多种上位机开发环境,包括mfc.Qt.C#之后,发现它们的API都是对底层协议的(可以说是C语言)的封装,所以了解了底层协议,任意换上位机开发环境都是没问题的. 1.服务器创建套接字socket ...
- RequestMapping请求映射方式
1.标准映射 规则: 1) @RequestMapping可以设置在类上,也可以设置在方法上 2) 请求的映射规则是:类上的RequestMapping + 方法上的RequestMapping 3) ...
- JAVA题库01
说出一些常用的类,包,接口,请各举5个 常用的类:BufferedReader BufferedWriter FileReader FileWirter String Integer java ...
- ACM的输入输出总结
关于ACM的输入输出(一) 一般来说ACM的现场赛会规定输入输出 或者是文件输入标准输出 也可能是文件输入文件输出 如果没有规定的话那么一般就是标准的输入输出了 那说一下输入输出的重定向 一般用下面两 ...
- Launch an instance from a volume
从image boot,并且attach一个no-bootable volume: $ nova boot --flavor --image -af91-43d8-b5e6-a4506aa8f369 ...