http://codeforces.com/contest/1025/problem/D

D. Recovering BST
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees!

Recently he found a binary search tree and instinctively nibbled all of its edges, hence messing up the vertices. Dima knows that if Andrew, who has been thoroughly assembling the tree for a long time, comes home and sees his creation demolished, he'll get extremely upset.

To not let that happen, Dima has to recover the binary search tree. Luckily, he noticed that any two vertices connected by a direct edge had their greatest common divisor value exceed 11 .

Help Dima construct such a binary search tree or determine that it's impossible. The definition and properties of a binary search tree can be found here.

Input

The first line contains the number of vertices nn (2≤n≤7002≤n≤700 ).

The second line features nn distinct integers aiai (2≤ai≤1092≤ai≤109 ) — the values of vertices in ascending order.

Output

If it is possible to reassemble the binary search tree, such that the greatest common divisor of any two vertices connected by the edge is greater than 11 , print "Yes" (quotes for clarity).

Otherwise, print "No" (quotes for clarity).

 
题意:给一个数组,问是否能组成一个排序二叉树满足每个相邻节点的gcd>1
题解:由于二叉树具有相同子结构的性质,所以可以通过dfs递归解决,如果使用dp[i][j]表示区间i~j是否可行,则还需要记录i~j的根,则开dp[i][j][k],而由于n<=750,则三维下来复杂度不能接受,所以考虑换一种方式记录根,令k=1表示区间i~j作为(j+1)的左儿子,k=0表示区间i~j作为区间(i-1)的右儿子则可把复杂度降低下来
 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
using namespace std;
//#define io_test
#define debug(x) cout<<x<<"####"<<endl;
typedef long long ll;
int a[];
bool d[][];
int dp[][][];
int gcd(int x,int y){
if(y==)return x;
return gcd(y,x%y);
}
bool dfs(int rt,int l,int r,int k){
if(l>r)return ;
if(dp[l][r][k]!=-)return dp[l][r][k];
int f=;
for(int i=l;i<=r;i++){
if(d[i][rt]&&dfs(i,l,i-,)&&dfs(i,i+,r,)){
f=;
break;
}
}
return dp[l][r][k]=f;
}
int main()
{
#ifdef io_test
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif // io_test
int n;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(gcd(a[i],a[j])!=){
d[i][j]=d[j][i]=;
}
}
}
memset(dp,-,sizeof(dp));
int f=;
for(int i=;i<=n;i++){
if(dfs(i,,i-,)&&dfs(i,i+,n,)){
f=;
break;
}
}
if(f)printf("No\n");
else printf("Yes\n");
return ;
}

[cf1025D][区间dp]的更多相关文章

  1. 区间dp——cf1025D二叉搜索树的中序遍历好题!

    这题帮我复习了一下BST的中序遍历.. 因为给定的数组是递增的,那么BST的中序遍历一定是1 2 3 4 5 6 7 8 9 ... n 即[l,r]为左子树,那么根节点就是r+1,反之根节点就是l- ...

  2. codeforce #505D - Recovering BST 区间DP

    1025D 题意: 有一个递增序列,问能不能构建出一颗每条边的端点值都不互质的二叉排序树. 思路: 区间DP,但是和常见的区间DP不一样, 这里dp[i][j]表示的是区间[i,j]能否以i为根建立一 ...

  3. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  4. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  5. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  6. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  7. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  8. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  9. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

随机推荐

  1. crt证书iis 中引用 程序目录提示 System.UnauthorizedAccessException:拒绝访问

    在站点根目录添加 Authenticated Users 权限

  2. Windows Server 2008 R2 服务器系统安装及配置全过程图文详解

    前言 本文主要介绍了 windows Server 2008 R2 服务器系统的安装及相关配置. 介绍的是以优盘的方式安装. 写这篇博文的目的一来是为了供有需要的网友参考, 二来自己也在此做个记载. ...

  3. python 使用selenium模块实现自动搜索百度百科词条(模拟人工搜索)

    目标:模拟人工搜索百度百科词条,爬取相关信息,自动删除上一个关键词,输入新关键词,继续搜索,直到循环结束. 代码: from selenium import webdriver from seleni ...

  4. 高通sdm845_la2.0源码编译及使用QFIL刷机

    一.下载源码 高通芯片代码下载地址:https://chipcode.qti.qualcomm.com/ . *_amss_standard_oem : 高通私有源码(*为sdm845-la--. * ...

  5. ListBox多列显示,原来比较简单

    数据库的表中,如果有多个列要现实,而对应的是ListBox控件,一般情况下,ListBox是单列显示的, 例如 ListBox1.DataSource = dbcenter.accessGetData ...

  6. Real time profiler for Delphi applications

    xalion提供的资源,这么强,还是免费的,快去试用!   ✓  Detailed debug information (internal, TDS, MAP) ✓  Display informat ...

  7. 【原创】使用开源libimobiledevice盗取iphone信息

     一.概述     libimobiledevice可以理解为Linux系统下的iTunes,破解了iTunes的通信协议. 依赖:https://github.com/libimobiledevic ...

  8. Spring Boot 异步运用

    使用@Async标签 导入包 org.springframework.scheduling.annotation.Async 并配置并发线程池asyncTaskConfig 实现AsyncConfig ...

  9. Python 3 Anaconda 下爬虫学习与爬虫实践 (1)

    环境python 3 anaconda pip 以及各种库 1.requests库的使用 主要是如何获得一个网页信息 重点是 r=requests.get("https://www.goog ...

  10. iOS和小米手机拍照上传后,在web端显示旋转

    ( ′◔ ‸◔`)现在的公司啊都流行混合开发,我们公司也不例外,非要把交互非常多的社区模块用内嵌web页展示,好吧好吧,毕竟有的应用也是这么做的,那既然是社区就肯定少不了用户上传图片的操作,在开发阶段 ...