单源最短路径的Bellman-Ford 算法
1.算法标签
BFS
2.算法概念
Bellman-Ford算法有这么一个先验知识在里面,那就是最短路径至多在N步之内,其中N为节点数,否则说明图中有负权值的回路,这样的图是找不到最短路径的。因此Bellman-Ford算法的思想如下,进行N次循环,在第 k 次循环中用dist数组记录 k 步之内到达各个顶点的最短路径长度,记做distk,然后在第k+1次循环中,遍历每条边,若有dist[v]>dist[u]+cost[u][v],则更新distk+1[v]=dist[u]+cost[u][v],并将v节点的前驱节点记为u。因此这是一个广度优先的算法,如果N次循环之后发现还未收敛,说明有负权值的回路,说明找不到最短路径。正因为如此,Bellman-Ford算法适应性比较强,但是算法复杂度较高,为O(VE),不过,经过优化的Bellman-Ford算法效率能有明显的提升。
Bellman-Ford算法维持一下几个数据结构:
- dist数组 :第 k 次循环中用dist数组记录 k 步之内到达各个顶点的最短路径长度
- previous数组 : 记录当前前驱
3.代码实现
头文件:
/* |
/* |
测试文件:
/* |
示例输入(同Dijkstra一节中的例子):

6 18 |
示例输出:

单源最短路径的Bellman-Ford 算法的更多相关文章
- 单源最短路径问题2 (Dijkstra算法)
用邻接矩阵 /* 单源最短路径问题2 (Dijkstra算法) 样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9 ...
- 单源最短路径问题1 (Bellman-Ford算法)
/*单源最短路径问题1 (Bellman-Ford算法)样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ ...
- 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...
- 单源最短路径问题之dijkstra算法
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶 ...
- 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...
- 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...
- 单源最短路径—Bellman-Ford和Dijkstra算法
Bellman-Ford算法:通过对边进行松弛操作来渐近地降低从源结点s到每个结点v的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同时为止.该算法主要是基于下面的定理: 设G=(V,E) ...
- 单源最短路径Dijkstra和优先级算法
百度百科:迪杰斯特拉算法. 代码实现如下: import java.util.Comparator; import java.util.PriorityQueue; import java.util. ...
- Bellman-Ford算法 - 有向图单源最短路径
2017-07-27 08:58:08 writer:pprp 参考书目:张新华的<算法竞赛宝典> Bellman-Ford算法是求有向图单源最短路径的,dijkstra算法的条件是图中 ...
- 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现
Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...
随机推荐
- C# 将字符串转化成流,将流转换成字符串
using System; using System.IO; using System.Text; namespace CSharpConvertString2Stream { class Progr ...
- KMP,模式匹配算法
[QQ群: 189191838,对算法和C++感兴趣可以进来] 我们经常会遇到一种情况是匹配两个字符串,看strPar中是否含有str子串,如果有则返回子串在父串strPar中的位置,如果不存在则返回 ...
- SQL Server Object Explorer in VS
菜单栏View-->SQL Server Object Explorer 默认有几个连接,可以根据需要自己再另外添加 比如添加127.0.0.1 建立连接之后,剩下的操作和sql server中 ...
- java 字符串函数
string1.equals(string2) 比较字符串 substring()它有两种形式,第一种是:String substring(int startIndex)第二种是:String sub ...
- R语言数据类型转换
test for data type is.numeric(), is.character(), is.vector(), is.matrix(), is.data.frame() convert i ...
- Projective Texture的原理与实现
http://blog.csdn.net/xukunn1226/article/details/775644 Projective Texture是比较常见的一种技术,实现起来代码也就区区的不过百行, ...
- Npoi Web 项目中(XSSFWorkbook) 导出出现无法访问已关闭的流的解决方法
原本在CS项目中用的好好的在BS项目中既然提示我导出出现无法访问已关闭的流的解决方法 比较郁闷经过研究 终于解决了先将方法发出来 让遇到此问题的筒子们以作参考 //新建类 重写Npoi流方法 publ ...
- BZOJ 4198 荷马史诗
哈夫曼树. 如果要最大的深度最小,再按h排序即可. #include<iostream> #include<cstdio> #include<cstring> #i ...
- 物联网操作系统HelloX V1.79发布公告
经过HelloX开发团队近半年的努力,在HelloX V1.78版本基础上,增加许多功能特性,并对V1.78版本的一些特性进行了进一步优化之后,正式形成HelloX V1.79测试版本.经相对充分的测 ...
- 【Python】logging模块学习笔记
因为做接口自动化测试遇到的一个代码逻辑上的问题,又不知道具体问题出在哪里,所以在模块化代码之前,先学习下python的日志模块logging. 入门1 入门2 日志级别大小关系为:CRITICAL & ...