如果将关系用一个数字来表示(相等表示不确定),那么题目相当于要计算
$1324-1243-1432$
=$(1323-1423)-(1233-1234)-(1322-1423)$
=$1323+1234-(1322+1233)$
=$1323+1234-1222-(1324+1342)$
先预处理出li表示i左边比i小的数,ri表示i右边比i大的数(线段树即可),然后对于一下每一项分别考虑如何统计:
1.1323,枚举1的位置i,右边有ri种,左边容斥,答案为任意-312-112=$li*(i-1)-li*(li-1)/2-\sum_{j=1}^{i-1}[aj<ai]*j$
2.1234,枚举3的位置i,右边有ri种,左边有$\sum_{j=1}^{i-1}[aj<ai]*lj$种
3.1222,枚举1的位置i,右边有$C_{ri}^{3}$种
4.1324+1342,枚举3的位置i,将整个拆分成4和12,4有ri种,再对1和3的位置关系容斥,即任意-312-321=$\sum_{j=i+1}^{n}[aj<ai]*(aj-1)-c(n-i-ri,2)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define mod 16777216
5 #define L (k<<1)
6 #define R (L+1)
7 #define mid (l+r>>1)
8 int n,ans,a[N],l[N],r[N],f[N<<2];
9 int c2(int k){
10 return 1LL*k*(k-1)/2%mod;
11 }
12 int c3(int k){
13 return 1LL*k*(k-1)*(k-2)/6%mod;
14 }
15 void update(int k,int l,int r,int x,int y){
16 if (l==r){
17 f[k]=(f[k]+y)%mod;
18 return;
19 }
20 if (x<=mid)update(L,l,mid,x,y);
21 else update(R,mid+1,r,x,y);
22 f[k]=(f[L]+f[R])%mod;
23 }
24 int query(int k,int l,int r,int x,int y){
25 if ((l>y)||(x>r))return 0;
26 if ((x<=l)&&(r<=y))return f[k];
27 return (query(L,l,mid,x,y)+query(R,mid+1,r,x,y))%mod;
28 }
29 int main(){
30 scanf("%d",&n);
31 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
32 for(int i=1;i<=n;i++){
33 update(1,1,n,a[i],1);
34 l[i]=query(1,1,n,1,a[i]-1);
35 r[i]=n-i-(a[i]-l[i]-1);
36 ans=((ans+1LL*r[i]*(l[i]*(i-1LL)-c2(l[i]))-c3(r[i]))%mod+mod)%mod;
37 }
38 memset(f,0,sizeof(f));
39 for(int i=1;i<=n;i++){
40 update(1,1,n,a[i],l[i]-i);
41 ans=(ans+1LL*r[i]*query(1,1,n,1,a[i]-1))%mod;
42 }
43 memset(f,0,sizeof(f));
44 for(int i=n;i;i--){
45 update(1,1,n,a[i],a[i]-1);
46 ans=(ans+1LL*r[i]*(query(1,1,n,1,a[i]-1)-c2(n-i-r[i])+mod))%mod;
47 }
48 printf("%d",ans);
49 }

[bzoj1145]图腾的更多相关文章

  1. bzoj1145[CTSC2008]图腾

    传送门 虽然是远古时期的ctsc,但是果然还是ctsc啊 前置芝士:树状数组 这个题最开始的思路很好想,由于之前写过一个类似处理的题,所以这个题我一开始就想到了思路. 首先,我们可以尝试讲图腾表示为x ...

  2. bzoj1145

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1145 神题...... 定义f(abcd)为高度排名为abcd的个数,例如闪电的个数为f(13 ...

  3. HTML5之2D物理引擎 Box2D for javascript Games 系列 第三部分之创建图腾破坏者的关卡

    创建图腾破坏者的关卡 现在你有能力创建你的第一个游戏原型,我们将从创建图腾破坏者的级别开始. 为了展示我们所做事情的真实性,我们将流行的Flash游戏图腾破坏者的一关作为 我们模仿的对象.请看下面的截 ...

  4. 洛谷 P1498 南蛮图腾

    题目描述 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少少数民族的智慧,他发现少数民族的图腾往往有着一种分形的效果,在得到了酋长的传授后,孔明掌握了不少绘图技术,但唯独不会画他们的图 ...

  5. CH4201 楼兰图腾

    题意 4201 楼兰图腾 0x40「数据结构进阶」例题 描述 在完成了分配任务之后,西部314来到了楼兰古城的西部.相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀('V'), ...

  6. 洛咕 P4528 [CTSC2008]图腾

    洛咕 P4528 [CTSC2008]图腾 神题orz. 先约定abcd表示\(1\leq A<B<C<D\leq n\),而且\(y_a,y_b,y_c,y_d\)的排名正好是\( ...

  7. P1498 南蛮图腾

    P1498 南蛮图腾 题目描述 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少少数民族的智慧,他发现少数民族的图腾往往有着一种分形的效果(看Hint),在得到了酋长的传授后,孔明掌握 ...

  8. TYVJ1432 楼兰图腾

    Description 平面上有 N(N≤[10]^5 ) 个点,每个点的横.纵坐标的范围都是 1~N,任意两个点的横.纵坐标都不相同.若三个点 (x_1,y_1),(x_2,y_2),(x_3,y_ ...

  9. 洛谷——P1498 南蛮图腾

    https://www.luogu.org/problem/show?pid=1498 题目描述 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少少数民族的智慧,他发现少数民族的图腾往 ...

随机推荐

  1. 痞子衡嵌入式:超级下载算法RT-UFL v1.0在IAR EW for Arm下的使用

    痞子衡主导的"学术"项目 <RT-UFL - 一个适用全平台i.MXRT的超级下载算法设计> v1.0 版发布近 4 个月了,部分客户已经在实际项目开发调试中用上了这个 ...

  2. js--Symbol 符号基本数据类型

    前言 ECMAScript 6 中新增了 Symbol 符号这一基本数据类型,那么Symbol 是用来干什么的,对开发又有什么帮助呢?本文来总结记录一下 Symbol 的相关知识点. 正文 Symbo ...

  3. 剑指offer:JZ12 矩阵中的路径

    JZ12 矩阵中的路径 描述 请设计一个函数,用来判断在一个n乘m的矩阵中是否存在一条包含某长度为len的字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上, ...

  4. [技术博客]WEB实现划词右键操作

    [技术博客]WEB实现划词右键操作 一.功能解释 简单地对题目中描述的功能进行解释:在浏览器中,通过拖动鼠标选中一个词(或一段文字),右键弹出菜单,且菜单为自定义菜单,而非浏览器本身的菜单.类似的功能 ...

  5. Beta阶段第一次会议

    Beta阶段第一次例会 时间:2020.5.16 完成工作 姓名 完成任务 难度 完成度 lm 1.修订网页端信息编辑bug2.修订网页端登录bug(提前完成,相关issue已关闭) 中 100% x ...

  6. Noip模拟73 2021.10.10

    老妈送来了防寒补给就很棒,再也不用晚上盖两层毛巾被了,再也不用担心晚上自动把毛巾被$split$了 还有一些好吃的耶叶 T1 小L的疑惑 考场上疑惑的切掉了 直接把$a$排序然后处理前缀和的过程中判断 ...

  7. QEvent

    QEvent类是所有事件类的基类,每一个对象都包含事件参数.Qt的主事件循环(QCoreApplication::exec())从事件队列中接收本地窗口系统的事件,并将它们翻译成QEvent,将这些事 ...

  8. Veritas Backup Exec™ 21.3 Multilingual (Windows)

    Backup Exec 21.3, Release date: 2021-09-06 请访问原文链接:https://sysin.org/blog/veritas-backup-exec-21-3/, ...

  9. gcc中预定义的宏__GNUC__

    转载:gcc中预定义的宏__GNUC__ - Cccarl - 博客园 (cnblogs.com) 今天在看Linux系统编程这本书的代码的时候看到了__GNUC__,不太清楚这个宏所以去查了一下,以 ...

  10. 转:Linux常用命令总结

    学习linux也有一阵子了,现总结一些常用的linux操作命令,方便大家查找1. cd命令这个命令是最基本的也是最常用的.它用于切换当前目录,可以是绝对路径,也可以是相对路径.例:cd /root/h ...