matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions
matplotlib教程学习笔记
如何创建网格形式的axes的组合呢:
- subplots()
- GridSpec
- SubplotSpec
- subplot2grid()
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
第一个例子是利用subplots()和gridspec来创建一个\(2\times 2\)的网格
首先利用subplots()是很容易做到这一点的:
fig1, fi_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True) #constrain_layout参数似乎是控制是否会重叠的

使用gridspec需要先创建一个fig对象,再创建Gridspec对象,然后将实例传入add_subplot(),gridspec的使用习惯和numpy数组是相当的
fig2 = plt.figure(constrained_layout=True)
spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig2)
f2_ax1 = fig2.add_subplot(spec2[0, 0])
f2_ax2 = fig2.add_subplot(spec2[0, 1])
f2_ax3 = fig2.add_subplot(spec2[1, 0])
f2_ax4 = fig2.add_subplot(spec2[1, 1])

gridspec有什么厉害的地方呢,我们可以通过索引和切片操作,使得某些axes占据多个格子
fig3 = plt.figure(constrained_layout=True)
gs = fig3.add_gridspec(3, 3)
f3_ax1 = fig3.add_subplot(gs[0, :])
f3_ax1.set_title('gs[0, :]')
f3_ax2 = fig3.add_subplot(gs[1, :-1])
f3_ax2.set_title('gs[1, :-1]')
f3_ax3 = fig3.add_subplot(gs[1:, -1])
f3_ax3.set_title('gs[1:, -1]')
f3_ax4 = fig3.add_subplot(gs[-1, 0])
f3_ax4.set_title('gs[-1, 0]')
f3_ax5 = fig3.add_subplot(gs[-1, -2])
f3_ax5.set_title('gs[-1, -2]');

fig4 = plt.figure(constrained_layout=True)
spec4 = fig4.add_gridspec(ncols=2, nrows=2)
anno_opts = dict(xy=(0.3, 0.3), xycoords='axes fraction',
va='center', ha='center')
f4_ax1 = fig4.add_subplot(spec4[0, 0])
f4_ax1.annotate('GridSpec[0, 0]', **anno_opts)
fig4.add_subplot(spec4[0, 1]).annotate('GridSpec[0, 1:]', **anno_opts)
fig4.add_subplot(spec4[1, 0]).annotate('GridSpec[1:, 0]', **anno_opts)
fig4.add_subplot(spec4[1, 1]).annotate('GridSpec[1:, 1:]', **anno_opts);

另外的,width_ratios和height_ratios参数,参数需要传入一个装有数字,比如[2, 4, 8]和
[1, 2, 4],不过这俩个表示的含义是一样的,因为参数关系的他们之间的比例:
2:4:8与1:2:4是一致的。
fig5 = plt.figure(constrained_layout=True)
widths = [2, 3, 1.5]
heights = [1, 3, 2]
spec5 = fig5.add_gridspec(ncols=3, nrows=3, width_ratios=widths,
height_ratios=heights)
for row in range(3):
for col in range(3):
ax = fig5.add_subplot(spec5[row, col])
label = 'Width: {}\nHeight: {}'.format(widths[col], heights[row])
ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

事实上,width_ratio参数和height_ratio参数对于subplots()是十分便利的一个工具,subplots()有一个gridspec_kw参数,事实上,借此我们可以将传入gridspec的参数传入subplots(),具体形式如下:
gs_kw = dict(width_ratios=widths, height_ratios=heights)
fig6, f6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True,
gridspec_kw=gs_kw)
for r, row in enumerate(f6_axes):
for c, ax in enumerate(row):
label = 'Width: {}\nHeight: {}'.format(widths[c], heights[r])
ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

subplots和gridspec二者可以结合,比如,我们可以通过subplots先创建大部分的axes,再利用gridspec组合某些部分,当然,这可能需要利用到
get_gridspec方法和remove方法
fig7, f7_axs = plt.subplots(ncols=3, nrows=3)
gs = f7_axs[1, 2].get_gridspec()
# remove the underlying axes
for ax in f7_axs[1:, -1]:
ax.remove()
axbig = fig7.add_subplot(gs[1:, -1])
axbig.annotate('Big Axes \nGridSpec[1:, -1]', (0.1, 0.5),
xycoords='axes fraction', va='center')
fig7.tight_layout();

对Gridspec的一些精细的调整
当gridspec被显示使用的时候,我们可以通过一些参数来进行细微的调整,注意这个选择与constrained_layout或者figure.tight_layout是有冲突的
left : axes左边缘距离画板左侧的距离
right: axes右边缘距离画板左侧的距离
top : axes上边缘距离画板下侧的距离
bottom : axes下边缘距离画板下侧的距离
hspace: 预留给subplots之间的高度的距离
wspace: 预留给subplots之间的宽度的距离
fig8 = plt.figure(constrained_layout=False) #注意设置为False否则会冲突
gs1 = fig8.add_gridspec(nrows=3, ncols=3, right=0.88, wspace=0.05)
f8_ax1 = fig8.add_subplot(gs1[:-1, :])
f8_ax2 = fig8.add_subplot(gs1[-1, :-1])
f8_ax3 = fig8.add_subplot(gs1[-1, -1])

这些细微的调整只对由gridspec创建的格子有效
fig9 = plt.figure(constrained_layout=False)
gs1 = fig9.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48,
wspace=0.05)
f9_ax1 = fig9.add_subplot(gs1[:-1, :])
f9_ax2 = fig9.add_subplot(gs1[-1, :-1])
f9_ax3 = fig9.add_subplot(gs1[-1, -1])
gs2 = fig9.add_gridspec(nrows=3, ncols=3, left=0.55, right=0.98,
hspace=0.05)
f9_ax4 = fig9.add_subplot(gs2[:, :-1])
f9_ax5 = fig9.add_subplot(gs2[:-1, -1])
f9_ax6 = fig9.add_subplot(gs2[-1, -1])

利用SubplotSpec
fig.add_grdispec; gs.subgridspec
fig10 = plt.figure(constrained_layout=True)
gs0 = fig10.add_gridspec(1, 2)
gs00 = gs0[0].subgridspec(2, 3)
gs01 = gs0[1].subgridspec(3, 2)
for a in range(2):
for b in range(3):
fig10.add_subplot(gs00[a, b])
fig10.add_subplot(gs01[b, a])

一个利用Subplotspec的复杂例子
import numpy as np
from itertools import product
def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)
fig11 = plt.figure(figsize=(8, 8), constrained_layout=False)
# gridspec inside gridspec
outer_grid = fig11.add_gridspec(4, 4, wspace=0.0, hspace=0.0) #4 x 4个大格子
for i in range(16):
inner_grid = outer_grid[i].subgridspec(3, 3, wspace=0.0, hspace=0.0) #3 x 3个小格子
a, b = int(i/4)+1, i % 4+1
for j, (c, d) in enumerate(product(range(1, 4), repeat=2)):
ax = plt.Subplot(fig11, inner_grid[j])
ax.plot(*squiggle_xy(a, b, c, d))
ax.set_xticks([])
ax.set_yticks([])
fig11.add_subplot(ax)
all_axes = fig11.get_axes()
# show only the outside spines
# 之显示每个大格子外面的边框,小格子的边框就不显示
for ax in all_axes:
for sp in ax.spines.values():
sp.set_visible(False)
if ax.is_first_row():
ax.spines['top'].set_visible(True)
if ax.is_last_row():
ax.spines['bottom'].set_visible(True)
if ax.is_first_col():
ax.spines['left'].set_visible(True)
if ax.is_last_col():
ax.spines['right'].set_visible(True)
plt.show()

函数链接
subplots
GridSpec
Subplotsepc
subplot2grid()
subplots.adjust()
matplotlib 进阶之Customizing Figure Layouts Using GridSpec and Other Functions的更多相关文章
- matplotlib 进阶之origin and extent in imshow
目录 显示的extent Explicit extent and axes limits matplotlib教程学习笔记 import numpy as np import matplotlib.p ...
- matplotlib 进阶之Tight Layout guide
目录 简单的例子 Use with GridSpec Legend and Annotations Use with AxesGrid1 Colorbar 函数链接 matplotlib教程学习笔记 ...
- matplotlib 进阶之Constrained Layout Guide
目录 简单的例子 Colorbars Suptitle Legends Padding and Spacing spacing with colobars rcParams Use with Grid ...
- 【python】matplotlib进阶
参考文章:https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/ 几个重要对象:图像.子图.坐标轴.记号 figure:图像, subplo ...
- matplotlib 进阶之Legend guide
目录 matplotlib.pyplot.legend 方法1自动检测 方法2为现有的Artist添加 方3显示添加图例 控制图例的输入 为一类Artist设置图例 Legend 的位置 loc, b ...
- matplotlib 进阶之Artist tutorial(如何操作Atrist和定制)
目录 基本 plt.figure() fig.add_axes() ax.lines set_xlabel 一个完整的例子 定制你的对象 obj.set(alpha=0.5, zorder=2), o ...
- matplotlib常用操作2
关于matplotlib学习还是强烈建议常去官方http://matplotlib.org/contents.html里查一查各种用法和toturial等. 下面是jupyter notebook代码 ...
- Python第三方库matplotlib(2D绘图库)入门与进阶
Matplotlib 一 简介: 二 相关文档: 三 入门与进阶案例 1- 简单图形绘制 2- figure的简单使用 3- 设置坐标轴 4- 设置legend图例 5- 添加注解和绘制点以及在图形上 ...
- matplotlib使用GridSpec调整子图位置大小 (非对称的子图)
用matplotlib.pyplot的subplots命令可以很方便的画对称的子图,但是如果要画非对称的子图(如下)就需要用GridSpec命令来控制子图的位置和大小: 而上图的结构可以用一下两种方式 ...
随机推荐
- SpringCloud微服务实战——搭建企业级开发框架(三十一):自定义MybatisPlus代码生成器实现前后端代码自动生成
理想的情况下,代码生成可以节省很多重复且没有技术含量的工作量,并且代码生成可以按照统一的代码规范和格式来生成代码,给日常的代码开发提供很大的帮助.但是,代码生成也有其局限性,当牵涉到复杂的业务逻辑 ...
- day08 索引的创建与慢查询优化
day08 索引的创建与慢查询优化 昨日内容回顾 视图 视图:将SQL语句查询结果实体化保存起来,方便下次查询使用. 视图里面的数据来源于原表,视图只有表结构 # 创建视图 create view 视 ...
- Kafka入门教程(二)
转自:https://blog.csdn.net/yuan_xw/article/details/79188061 Kafka集群环境安装 相关下载 JDK要求1.8版本以上. JDK安装教程:htt ...
- SparkStreaming消费Kafka,手动维护Offset到Mysql
目录 说明 整体逻辑 offset建表语句 代码实现 说明 当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复 要想实现精准一次性,还需要将数据提交和offset提交维护在 ...
- 在服务端应用中如何获得客户端 IP
如果有 x-forwarded-for 的请求头,则取其中的第一个 IP,否则取建立连接 socket 的 remoteAddr. 而 x-forwarded-for 基本已成为了基于 proxy 的 ...
- 案例分析 CAN OPEN 调试记录 进度
2020.12.29 发现一片博客:https://blog.csdn.net/harrycomeon/article/details/94650103 需要一个硬件:CAN分析仪,网上200元左右. ...
- java代码定时备份mysql数据库及注意事项——基于 springboot
源码地址: https://gitee.com/kevin9401/BackUpDataBase git 拉取: https://gitee.com/kevin9401/BackUpDataBase. ...
- 【编程思想】【设计模式】【行为模式Behavioral】状态模式State
Python版 https://github.com/faif/python-patterns/blob/master/behavioral/state.py #!/usr/bin/env pytho ...
- 解决“该Jenkins实例似乎已离线”
在jenkins/pluginManager/advanced最下面 把:https://updates.jenkins-ci.org/update-center.json 换成: 1.http:// ...
- mysqlslap基准测试
目录 简介 二.例子 三.其它选项 简介 mysqlslap是mysql自带的基准测试工具 优点:查询数据,语法简单,灵活容易使用.该工具可以模拟多个客户端同时并发的向服务器发出查询更新,给出了性能测 ...