1 配置

1.1 开发环境:

  • HBase:hbase-1.0.0-cdh5.4.5.tar.gz
  • Hadoop:hadoop-2.6.0-cdh5.4.5.tar.gz
  • ZooKeeper:zookeeper-3.4.5-cdh5.4.5.tar.gz
  • Spark:spark-2.1.0-bin-hadoop2.6

1.2 Spark的配置

  • Jar包:需要HBase的Jar如下(经过测试,正常运行,但是是否存在冗余的Jar并未证实,若发现多余的jar可自行进行删除)

  • spark-env.sh

    添加以下配置:export SPARK_CLASSPATH=/home/hadoop/data/lib1/*

    注:如果使用spark-shell的yarn模式进行测试的话,那么最好每个NodeManager节点都有配置jars和hbase-site.xml
  • spark-default.sh
spark.yarn.historyServer.address=slave11:18080
spark.history.ui.port=18080
spark.eventLog.enabled=true
spark.eventLog.dir=hdfs:///tmp/spark/events
spark.history.fs.logDirectory=hdfs:///tmp/spark/events
spark.driver.memory=1g
spark.serializer=org.apache.spark.serializer.KryoSerializer

1.3 数据

1)格式: barCode@item@value@standardValue@upperLimit@lowerLimit

01055HAXMTXG10100001@KEY_VOLTAGE_TEC_PWR@1.60@1.62@1.75@1.55

01055HAXMTXG10100001@KEY_VOLTAGE_T_C_PWR@1.22@1.24@1.45@0.8

01055HAXMTXG10100001@KEY_VOLTAGE_T_BC_PWR@1.16@1.25@1.45@0.8

01055HAXMTXG10100001@KEY_VOLTAGE_11@1.32@1.25@1.45@0.8

01055HAXMTXG10100001@KEY_VOLTAGE_T_RC_PWR@1.24@1.25@1.45@0.8

01055HAXMTXG10100001@KEY_VOLTAGE_T_VCC_5V@1.93@1.90@1.95@1.65

01055HAXMTXG10100001@KEY_VOLTAGE_T_VDD3V3@1.59@1.62@1.75@1.55

2 代码演示

2.1 准备动作

1)既然是与HBase相关,那么首先需要使用hbase shell来创建一个表

创建表格:create ‘data’,’v’,create ‘data1’,’v’

2)使用spark-shell进行操作,命令如下:

bin/spark-shell --master yarn --deploy-mode client --num-executors 5 --executor-memory 1g --executor-cores 2

3)import 各种类

import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.client.Scan
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.protobuf.ProtobufUtil
import org.apache.hadoop.hbase.util.{Base64,Bytes}
import org.apache.hadoop.hbase.KeyValue
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.commons.codec.digest.DigestUtils

2.2 代码实战

创建conf和table

val conf= HBaseConfiguration.create()
conf.set(TableInputFormat.INPUT_TABLE,"data1")
val table = new HTable(conf,"data1")

2.2.1 数据写入

格式:

val put = new Put(Bytes.toBytes("rowKey"))
put.add("cf","q","value")

使用for来插入5条数据

for(i <- 1 to 5){ var put= new Put(Bytes.toBytes("row"+i));put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes("value"+i));table.put(put)}

到hbase shell中查看结果

2.2.2 数据读取

val hbaseRdd = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],classOf[org.apache.hadoop.hbase.client.Result])

1)take

hbaseRdd take 1

2)scan

var scan = new Scan();
scan.addFamily(Bytes.toBytes(“v”));
var proto = ProtobufUtil.toScan(scan)
var scanToString = Base64.encodeBytes(proto.toByteArray());
conf.set(TableInputFormat.SCAN,scanToString) val datas = hbaseRdd.map( x=>x._2).map{result => (result.getRow,result.getValue(Bytes.toBytes("v"),Bytes.toBytes("value")))}.map(row => (new String(row._1),new String(row._2))).collect.foreach(r => (println(r._1+":"+r._2)))

2.3 批量插入

2.3.1 普通插入

1)代码

val rdd = sc.textFile("/data/produce/2015/2015-03-01.log")
val data = rdd.map(_.split("@")).map{x=>(x(0)+x(1),x(2))}
val result = data.foreachPartition{x => {val conf= HBaseConfiguration.create();conf.set(TableInputFormat.INPUT_TABLE,"data");conf.set("hbase.zookeeper.quorum","slave5,slave6,slave7");conf.set("hbase.zookeeper.property.clientPort","2181");conf.addResource("/home/hadoop/data/lib/hbase-site.xml");val table = new HTable(conf,"data");table.setAutoFlush(false,false);table.setWriteBufferSize(3*1024*1024); x.foreach{y => {
var put= new Put(Bytes.toBytes(y._1));put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(y._2));table.put(put)};table.flushCommits}}}

2)执行时间如下:7.6 min

2.3.2 Bulkload

  1. 代码:
val conf = HBaseConfiguration.create();
val tableName = "data1"
val table = new HTable(conf,tableName)
conf.set(TableOutputFormat.OUTPUT_TABLE,tableName) lazy val job = Job.getInstance(conf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[KeyValue])
HFileOutputFormat.configureIncrementalLoad(job,table) val rdd = sc.textFile("/data/produce/2015/2015-03-01.log").map(_.split("@")).map{x => (DigestUtils.md5Hex(x(0)+x(1)).substring(0,3)+x(0)+x(1),x(2))}.sortBy(x =>x._1).map{x=>{val kv:KeyValue = new KeyValue(Bytes.toBytes(x._1),Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(x._2+""));(new ImmutableBytesWritable(kv.getKey),kv)}} rdd.saveAsNewAPIHadoopFile("/tmp/data1",classOf[ImmutableBytesWritable],classOf[KeyValue],classOf[HFileOutputFormat],job.getConfiguration())
val bulkLoader = new LoadIncrementalHFiles(conf)
bulkLoader.doBulkLoad(new Path("/tmp/data1"),table)

2) 执行时间:7s



3)执行结果:

到hbase shell 中查看 list “data1”

通过对比我们可以发现bulkload批量导入所用时间远远少于普通导入,速度提升了60多倍,当然我没有使用更大的数据量测试,但是我相信导入速度的提升是非常显著的,强烈建议使用BulkLoad批量导入数据到HBase中。

关于Spark与Hbase之间操作就写到这里,如果有什么地方写得不对或者运行不了,欢迎指出,谢谢

Spark实战之读写HBase的更多相关文章

  1. Spark学习笔记——读写Hbase

    1.首先在Hbase中建立一张表,名字为student 参考 Hbase学习笔记——基本CRUD操作 一个cell的值,取决于Row,Column family,Column Qualifier和Ti ...

  2. Spark读写Hbase的二种方式对比

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...

  3. Spark读写HBase

    Spark读写HBase示例 1.HBase shell查看表结构 hbase(main)::> desc 'SDAS_Person' Table SDAS_Person is ENABLED ...

  4. 使用 Spark SQL 高效地读写 HBase

    Apache Spark 和 Apache HBase 是两个使用比较广泛的大数据组件.很多场景需要使用 Spark 分析/查询 HBase 中的数据,而目前 Spark 内置是支持很多数据源的,其中 ...

  5. Spark实战1

    1. RDD-(Resilient Distributed Dataset)弹性分布式数据集      Spark以RDD为核心概念开发的,它的运行也是以RDD为中心.有两种RDD:第一种是并行Col ...

  6. [Java聊天室server]实战之五 读写循环(服务端)

    前言 学习不论什么一个稍有难度的技术,要对其有充分理性的分析,之后果断做出决定---->也就是人们常说的"多谋善断":本系列尽管涉及的是socket相关的知识,但学习之前,更 ...

  7. 【原创】大叔经验分享(25)hive通过外部表读写hbase数据

    在hive中创建外部表: CREATE EXTERNAL TABLE hive_hbase_table(key string, name string,desc string) STORED BY ' ...

  8. Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark实战高手之路】

    Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交 ...

  9. Spark对接Kafka、HBase

    本项目是为网站日志流量分析做的基础:网站日志流量分析系统,Kafka.HBase集群的搭建可参考:使用Docker搭建Spark集群(用于实现网站流量实时分析模块),里面有关于该搭建过程 本次对接Ka ...

随机推荐

  1. .net core 持续构建简易教程

    环境需求:jenkins和.netcore 由于jenkins在真机上的部署比较麻烦,所以在这里我使用基于jenkins的Docker,只要任何一台运行docker的环境都可以进行以下的操作. doc ...

  2. 深入浅出数据结构C语言版(6)——游标数组及其实现

    在前两次博文中,我们由表讲到数组,然后又由数组的缺陷提出了指针式链表(即http://www.cnblogs.com/mm93/p/6576765.html中讲解的带有next指针的链表).但是指针式 ...

  3. shiro使用教程

    一.shiro是什么 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.不仅可以在Web项目中使用,在普通的项目中也是可以使用的 二.shiro可以做什 ...

  4. linux-SSR多用户版配置详解

    前述:好久没有玩服务器,今天有一哥们要浏览下external website,就搭建一个新的服务器(本人用Vultr的Japan2.5$/mon centOs7.0 64位) 嗯,条件差不多了,开始啦 ...

  5. jq轮播图插件

    /* * 使用说明  *    *   1:需要提供一个标签   *   2:lis:图片的个数 *   3:轮播图的大小 width ,height *   4:图片的地址imgs[0].carou ...

  6. 老李推荐:第8章7节《MonkeyRunner源码剖析》MonkeyRunner启动运行过程-小结

    老李推荐:第8章7节<MonkeyRunner源码剖析>MonkeyRunner启动运行过程-小结   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性 ...

  7. iptables初探

    一,前言 本来想起个名字叫做"小白都是怎么学习iptables的?"或者"你为什么还不了解iptables?"等等,就像简书上的头条文章,虽然被说成" ...

  8. jQuery基础学习(三)—jQuery中的DOM操作

    一.查找节点      查找属性节点: 通过jQuery的选择器来完成.      操作属性节点: 调用jQuery对象的attr()来获取它的属性值.      操作文本节点: 通过text()方法 ...

  9. mysql 分析2 show processlist ;

    show processlist ; 可以查看当前有哪些链接 处于什么状态 分析语句 那些连接处于什么状态 (需要通过脚本观察一段时间内的有运行情况做出统计一直刷新服务器运行状态 ) 当出现下面的几种 ...

  10. CTF入门指南(0基础)

    ctf入门指南 如何入门?如何组队? capture the flag 夺旗比赛 类型: Web 密码学 pwn 程序的逻辑分析,漏洞利用windows.linux.小型机等 misc 杂项,隐写,数 ...