Spark实战之读写HBase
1 配置
1.1 开发环境:
- HBase:hbase-1.0.0-cdh5.4.5.tar.gz
- Hadoop:hadoop-2.6.0-cdh5.4.5.tar.gz
- ZooKeeper:zookeeper-3.4.5-cdh5.4.5.tar.gz
- Spark:spark-2.1.0-bin-hadoop2.6
1.2 Spark的配置
- Jar包:需要HBase的Jar如下(经过测试,正常运行,但是是否存在冗余的Jar并未证实,若发现多余的jar可自行进行删除)
- spark-env.sh
添加以下配置:export SPARK_CLASSPATH=/home/hadoop/data/lib1/*
注:如果使用spark-shell的yarn模式进行测试的话,那么最好每个NodeManager节点都有配置jars和hbase-site.xml - spark-default.sh
spark.yarn.historyServer.address=slave11:18080
spark.history.ui.port=18080
spark.eventLog.enabled=true
spark.eventLog.dir=hdfs:///tmp/spark/events
spark.history.fs.logDirectory=hdfs:///tmp/spark/events
spark.driver.memory=1g
spark.serializer=org.apache.spark.serializer.KryoSerializer
1.3 数据
1)格式: barCode@item@value@standardValue@upperLimit@lowerLimit
01055HAXMTXG10100001@KEY_VOLTAGE_TEC_PWR@1.60@1.62@1.75@1.55
01055HAXMTXG10100001@KEY_VOLTAGE_T_C_PWR@1.22@1.24@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_T_BC_PWR@1.16@1.25@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_11@1.32@1.25@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_T_RC_PWR@1.24@1.25@1.45@0.8
01055HAXMTXG10100001@KEY_VOLTAGE_T_VCC_5V@1.93@1.90@1.95@1.65
01055HAXMTXG10100001@KEY_VOLTAGE_T_VDD3V3@1.59@1.62@1.75@1.55
2 代码演示
2.1 准备动作
1)既然是与HBase相关,那么首先需要使用hbase shell来创建一个表
创建表格:create ‘data’,’v’,create ‘data1’,’v’
2)使用spark-shell进行操作,命令如下:
bin/spark-shell --master yarn --deploy-mode client --num-executors 5 --executor-memory 1g --executor-cores 2
3)import 各种类
import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.client.Scan
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.protobuf.ProtobufUtil
import org.apache.hadoop.hbase.util.{Base64,Bytes}
import org.apache.hadoop.hbase.KeyValue
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles
import org.apache.hadoop.hbase.HColumnDescriptor
import org.apache.commons.codec.digest.DigestUtils
2.2 代码实战
创建conf和table
val conf= HBaseConfiguration.create()
conf.set(TableInputFormat.INPUT_TABLE,"data1")
val table = new HTable(conf,"data1")
2.2.1 数据写入
格式:
val put = new Put(Bytes.toBytes("rowKey"))
put.add("cf","q","value")
使用for来插入5条数据
for(i <- 1 to 5){ var put= new Put(Bytes.toBytes("row"+i));put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes("value"+i));table.put(put)}
到hbase shell中查看结果
2.2.2 数据读取
val hbaseRdd = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],classOf[org.apache.hadoop.hbase.client.Result])
1)take
hbaseRdd take 1
2)scan
var scan = new Scan();
scan.addFamily(Bytes.toBytes(“v”));
var proto = ProtobufUtil.toScan(scan)
var scanToString = Base64.encodeBytes(proto.toByteArray());
conf.set(TableInputFormat.SCAN,scanToString)
val datas = hbaseRdd.map( x=>x._2).map{result => (result.getRow,result.getValue(Bytes.toBytes("v"),Bytes.toBytes("value")))}.map(row => (new String(row._1),new String(row._2))).collect.foreach(r => (println(r._1+":"+r._2)))
2.3 批量插入
2.3.1 普通插入
1)代码
val rdd = sc.textFile("/data/produce/2015/2015-03-01.log")
val data = rdd.map(_.split("@")).map{x=>(x(0)+x(1),x(2))}
val result = data.foreachPartition{x => {val conf= HBaseConfiguration.create();conf.set(TableInputFormat.INPUT_TABLE,"data");conf.set("hbase.zookeeper.quorum","slave5,slave6,slave7");conf.set("hbase.zookeeper.property.clientPort","2181");conf.addResource("/home/hadoop/data/lib/hbase-site.xml");val table = new HTable(conf,"data");table.setAutoFlush(false,false);table.setWriteBufferSize(3*1024*1024); x.foreach{y => {
var put= new Put(Bytes.toBytes(y._1));put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(y._2));table.put(put)};table.flushCommits}}}
2)执行时间如下:7.6 min
2.3.2 Bulkload
- 代码:
val conf = HBaseConfiguration.create();
val tableName = "data1"
val table = new HTable(conf,tableName)
conf.set(TableOutputFormat.OUTPUT_TABLE,tableName)
lazy val job = Job.getInstance(conf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[KeyValue])
HFileOutputFormat.configureIncrementalLoad(job,table)
val rdd = sc.textFile("/data/produce/2015/2015-03-01.log").map(_.split("@")).map{x => (DigestUtils.md5Hex(x(0)+x(1)).substring(0,3)+x(0)+x(1),x(2))}.sortBy(x =>x._1).map{x=>{val kv:KeyValue = new KeyValue(Bytes.toBytes(x._1),Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(x._2+""));(new ImmutableBytesWritable(kv.getKey),kv)}}
rdd.saveAsNewAPIHadoopFile("/tmp/data1",classOf[ImmutableBytesWritable],classOf[KeyValue],classOf[HFileOutputFormat],job.getConfiguration())
val bulkLoader = new LoadIncrementalHFiles(conf)
bulkLoader.doBulkLoad(new Path("/tmp/data1"),table)
2) 执行时间:7s
3)执行结果:
到hbase shell 中查看 list “data1”
通过对比我们可以发现bulkload批量导入所用时间远远少于普通导入,速度提升了60多倍,当然我没有使用更大的数据量测试,但是我相信导入速度的提升是非常显著的,强烈建议使用BulkLoad批量导入数据到HBase中。
关于Spark与Hbase之间操作就写到这里,如果有什么地方写得不对或者运行不了,欢迎指出,谢谢
Spark实战之读写HBase的更多相关文章
- Spark学习笔记——读写Hbase
1.首先在Hbase中建立一张表,名字为student 参考 Hbase学习笔记——基本CRUD操作 一个cell的值,取决于Row,Column family,Column Qualifier和Ti ...
- Spark读写Hbase的二种方式对比
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...
- Spark读写HBase
Spark读写HBase示例 1.HBase shell查看表结构 hbase(main)::> desc 'SDAS_Person' Table SDAS_Person is ENABLED ...
- 使用 Spark SQL 高效地读写 HBase
Apache Spark 和 Apache HBase 是两个使用比较广泛的大数据组件.很多场景需要使用 Spark 分析/查询 HBase 中的数据,而目前 Spark 内置是支持很多数据源的,其中 ...
- Spark实战1
1. RDD-(Resilient Distributed Dataset)弹性分布式数据集 Spark以RDD为核心概念开发的,它的运行也是以RDD为中心.有两种RDD:第一种是并行Col ...
- [Java聊天室server]实战之五 读写循环(服务端)
前言 学习不论什么一个稍有难度的技术,要对其有充分理性的分析,之后果断做出决定---->也就是人们常说的"多谋善断":本系列尽管涉及的是socket相关的知识,但学习之前,更 ...
- 【原创】大叔经验分享(25)hive通过外部表读写hbase数据
在hive中创建外部表: CREATE EXTERNAL TABLE hive_hbase_table(key string, name string,desc string) STORED BY ' ...
- Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark实战高手之路】
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交 ...
- Spark对接Kafka、HBase
本项目是为网站日志流量分析做的基础:网站日志流量分析系统,Kafka.HBase集群的搭建可参考:使用Docker搭建Spark集群(用于实现网站流量实时分析模块),里面有关于该搭建过程 本次对接Ka ...
随机推荐
- sqlcmd的使用小结
据说,超过80M的sql文件是不能在查询分析器中执行的(可能是运行得太慢,也可能查询分析器就不能容载如此多的语句). 那么就有了sqlcmd命令: 首先进入cmd窗口,便可进行以下操作 1.登录sql ...
- spring security 3.x 多页面登录配置入门教程
最近在最shiro的多入口登录,搞了好久,就把spring security拿出来再炒一下,这是我以前在csdn写过的一篇博客. spring security 是一个权限控制的框架.可以很方便地实现 ...
- 老李分享:HTTP协议之协议头
老李分享:HTTP协议之协议头 当我们打开一个网页时,浏览器要向网站服务器发送一个HTTP请求头,然后网站服务器根据HTTP请求头的内容生成当次请求的内容发送给浏览器.你明白HTTP请求头的具体含 ...
- 手机自动化测试:Appium源码分析之跟踪代码分析五
手机自动化测试:Appium源码分析之跟踪代码分析五 手机自动化测试是未来很重要的测试技术,作为一名测试人员应该熟练掌握,POPTEST举行手机自动化测试的课程,希望可以训练出优秀的手机测试开发工 ...
- iOS 给UITextView加一个placeholder
苹果并没有为UITextView提供placeholder功能.我们可以通过两种办法实现. 方法一: 思路:设置默认显示的文字,颜色设置为灰色.代理方法监听textView点击. 缺点:如果点击到文字 ...
- linux redis安装
redis官网地址:http://www.redis.io/ 在Linux下安装Redis非常简单,具体步骤如下(官网有说明): 1.下载源码,解压缩后编译源码. $ wget http://down ...
- Liferay中利用URL传参数
业务场景:现在有一个新闻系统,有两个页面,A是新闻列表页面/web/guest/home,B是新闻的详情页面/web/guest/newsview. 业务逻辑为:在A页面中,点击新闻的标题进入B页面, ...
- 如何在多个项目中分离Asp.Net Core Mvc的Controller和Areas
前言 软件系统中总是希望做到松耦合,项目的组织形式也是一样,本篇文章将介绍在ASP.NET CORE MVC中怎么样将Controller与主网站项目进行分离,并且对Areas进行支持. 实践 1.新 ...
- Broker节点
在druid集群环境中 broker节点的作用是查询.它知道metadata 通过zookeeper发送到了集群中的哪个节点,从而能够准确的查询到.broker也把各个节点的结果汇聚到一个节点中.On ...
- How to trace the Geolocation of network traffic
A case about suspicious malware App. A forensic examiner capatured some pcap files and he'd to know ...