Codeforces 351B Jeff and Furik 概率 | DP
B. Jeff and Furik
1 second
256 megabytes
standard input
standard output
Jeff has become friends with Furik. Now these two are going to play one quite amusing game.
At the beginning of the game Jeff takes a piece of paper and writes down a permutation consisting of n numbers: p1, p2, ..., pn. Then the guys take turns to make moves, Jeff moves first. During his move, Jeff chooses two adjacent permutation elements and then the boy swaps them. During his move, Furic tosses a coin and if the coin shows "heads" he chooses a random pair of adjacent elements with indexes i and i + 1, for which an inequality pi > pi + 1 holds, and swaps them. But if the coin shows "tails", Furik chooses a random pair of adjacent elements with indexes i and i + 1, for which the inequality pi < pi + 1 holds, and swaps them. If the coin shows "heads" or "tails" and Furik has multiple ways of adjacent pairs to take, then he uniformly takes one of the pairs. If Furik doesn't have any pair to take, he tosses a coin one more time. The game ends when the permutation is sorted in the increasing order.
Jeff wants the game to finish as quickly as possible (that is, he wants both players to make as few moves as possible). Help Jeff find the minimum mathematical expectation of the number of moves in the game if he moves optimally well.
You can consider that the coin shows the heads (or tails) with the probability of 50 percent.
The first line contains integer n (1 ≤ n ≤ 3000). The next line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the permutationp. The numbers are separated by spaces.
In a single line print a single real value — the answer to the problem. The answer will be considered correct if the absolute or relative error doesn't exceed 10 - 6.
2
1 2
0.000000
5
3 5 2 4 1
13.000000
In the first test the sequence is already sorted, so the answer is 0.
题意: 两个人轮流游戏,先手交换相邻两个数,后手先抛硬币,正面,就随机找到一对相邻左大右小的数换,反面,就随机找到一对相邻右大左小的数换,直到整个数列升序排列,求最小期望步数。
思路: 由于第一个人每次都会减少一对逆序对,而后手会50%减少一对,50%增加一对,我们把两个人凑起来就是:
50%逆序对不变,50%减少2对
令dp[i]表示减少i个逆序对的步数的期望
dp[i]=dp[i]*0.5+dp[i-2]*0.5+2(要减少i个逆序对期望dp[i]步 = 此次两人共2步+减少dp[i-2]逆序对的期望步数+减少dp[i]逆序対的期望步数)
算出来就是dp[i]=dp[i-2]+4,初值:dp[0]=0,dp[1]=1
故dp数组分奇偶后就是两个等差数列,dp[i]=2*i(i为偶数),dp[i]=2*i-1(i为奇数),逆序对直接n^2暴力即可
#include "bits/stdc++.h"
using namespace std;
#define rep(i, s, n) for(int i=s;i<n;i++)
const int N=;
int a[N];
int main() {
int n;
while(cin >> n){
rep(i, , n) cin >> a[i];
int s = ;
rep(i, , n) rep(j, i + , n) if (a[i] > a[j]) s++;
double ans = s & ? s / * + : s * ;
printf("%.6f\n", ans);
}
return ;
}
Codeforces 351B Jeff and Furik 概率 | DP的更多相关文章
- Codeforces 351B Jeff and Furik:概率 + 逆序对【结论题 or dp】
题目链接:http://codeforces.com/problemset/problem/351/B 题意: 给你一个1到n的排列a[i]. Jeff和Furik轮流操作,Jeff先手. Jeff每 ...
- Codeforces 351B Jeff and Furik
http://codeforces.com/problemset/problem/351/B 题意:两个人轮流游戏,先手交换相邻两个数,后手先抛硬币,正面就左大右小换,反面就右大左小换,随机找到一对数 ...
- CodeForces 540D--Bad Luck Island(概率DP)
貌似竟然是我的第一道概率DP.. 手机码代码真不舒服.... /************************************************ Memory: 67248 KB Ti ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- CodeForces 24D Broken robot (概率DP)
D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- codeforces 352D - Jeff and Furik【期望dp】
首先恋人操作过一轮之后逆序对不会变多,所以设f[i]为把i个逆序对消掉的期望次数,f[i]=0.5f[i-2]+0.5f[i]+2,化简然后递推即可 #include<iostream> ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- CodeForces 148D-Bag of mice(概率dp)
题意: 袋子里有w个白球b个黑球,现在两个人轮流每次取一个球(不放回),先取到白球的获胜,当后手取走一个球时,袋子里的球会随机的漏掉一个,问先手获胜的概率. 分析: dp[i][j]表示袋子中i个白球 ...
- Codeforces 1151F Sonya and Informatics (概率dp)
大意: 给定01序列, 求随机交换k次后, 序列升序的概率. 假设一共$tot$个$0$, 设交换$i$次后前$tot$个数中有$j$个$0$的方案数为$dp[i][j]$, 答案即为$\frac{d ...
随机推荐
- 有道云笔记Markdown使用
目录 使用规则 代码高亮 制作待办事项 高效绘图 基本规则 使用规则 代码高亮 #include <iostream> #include <string> using name ...
- java安装环境变量设置
1,依次打开:我的电脑-->属性-->高级-->环境变量 2,设置用户变量 新建 JAVA_HOME C:\Program Files\Java\j2sdk1.5.0 (JDK的安装 ...
- 阿里云搭建bind服务,外网ip不能用来解析问题解决
options { listen-on port 53 { any; }; //端口开放any listen-on-v6 port 53 { ::1; }; directory "/var/ ...
- Comparison of Android versions(strcmp的应用)
Description As an Android developer, itˇs really not easy to figure out a newer version of two kerne ...
- 20145214 《Java程序设计》第10周学习总结
20145214 <Java程序设计>第10周学习总结 学习内容总结 计算机网络概述 在计算机网络中,现在命名IP地址的规定是IPv4协议,该协议规定每个IP地址由4个0-255之间的数字 ...
- Android 网络编程 API笔记 - java.net 包 权限 地址 套接字 相关类 简介
Android 网络编程相关的包 : 9 包, 20 接口, 103 类, 6 枚举, 14异常; -- Java包 : java.net 包 (6接口, 34类, 2枚举, 12异常); -- An ...
- BluetoothServerSocket详解
一. BluetoorhServerSocket简介 1. 继承关系 public final class BluetoothServerSocket extends Object implement ...
- Java中的死锁问题
死锁问题: 例如有两个线程, 线程1与线程2. 线程1在执行的过程中, 要锁定对象1, 2才能完成整个操作, 首先锁定对象1, 再锁定对象2. 线程2在执行的过程中, 要锁定对象2, 1才能完成整个操 ...
- php添加扩展 在phpinfo能看到该扩展,但在cli用php -m 却看不到,为什么呢,求指教
1. 没有出现的原因是:执行时添加上php.ini的文件就可以了 $ /usr/local/php/bin/php -c /usr/local/php/etc/php.ini -m | grep ...
- 浅述Try {} Catch{} 作用
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Test ...