NEURAL NETWORKS, PART 1: BACKGROUND
NEURAL NETWORKS, PART 1: BACKGROUND
Artificial neural networks (NN for short) are practical, elegant, and mathematically fascinating models for machine learning. They are inspired by the central nervous systems of humans and animals – smaller processing units (neurons) are connected together to form a complex network that is capable of learning and adapting.
The idea of such neural networks is not new. McCulloch-Pitts (1943) described binary threshold neurons already back in 1940’s. Rosenblatt (1958) popularised the use of perceptrons, a specific type of neurons, as very flexible tools for performing a variety of tasks. The rise of neural networks was halted after Minsky and Papert (1969) published a book about the capabilities of perceptrons, and mathematically proved that they can’t really do very much. This result was quickly generalised to all neural networks, whereas it actually applied only to a specific type of perceptrons, leading to neural networks being disregarded as a viable machine learning method.
In recent years, however, the neural network has made an impressive comeback. Research in the area has become much more active, and neural networks have been found to be more than capable learners, breaking state-of-the-art results on a wide variety of tasks. This has been substantially helped by developments in computing hardware, allowing us to train very large complex networks in reasonable time. In order to learn more about neural networks, we must first understand the concept of vector space, and this is where we’ll start.
A vector space is a space where we can represent the position of a specific point or object as a vector (a sequence of numbers). You’re probably familiar with 2 or 3-dimensional coordinate systems, but we can easily extend this to much higher dimensions (think hundreds or thousands). However, it’s quite difficult to imagine a 1000-dimensional space, so we’ll stick to 2-dimensional illustations.
In the graph below, we have placed 4 objects in a 2-dimensional space, and each of them has a 2-dimensional vector that represents their position in this space. For machine learning and classification we make the assumption that similar objects have similar coordinates and are therefore positioned close to each other. This is true in our example, as cities are positioned in the upper left corner, and days-of-the-week are positioned a bit further in the lower right corner.

Let’s say we now get a new object (see image below) and all we know are its coordinates. What do you think, is this object a city or a day-of-the-week? It’s probably a city, because it is positioned much closer to other existing cities we already know about.

This is the kind of reasoning that machine learning tries to perform. Our example was very simple, but this problem gets more difficult when dealing with thousands of dimensions and millions of noisy datapoints.
In a traditional machine learning context these vectors are given as input to the classifier, both at training and testing time. However, there exist methods of representation learning where these vectors are learned automatically, together with the model.
Now that we know about vector spaces, it’s time to look at how the neuron works.
References
- McCulloch, Warren S., and Walter Pitts. “A logical calculus of the ideas immanent in nervous activity.” The Bulletin of Mathematical Biophysics 5.4 (1943): 115-133.
- Minsky, Marvin, and Papert Seymour. “Perceptrons.” (1969).
- Rosenblatt, Frank. “The perceptron: a probabilistic model for information storage and organization in the brain.” Psychological review 65.6 (1958): 386.
NEURAL NETWORKS, PART 1: BACKGROUND的更多相关文章
- 【转】Artificial Neurons and Single-Layer Neural Networks
原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
- Hacker's guide to Neural Networks
Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...
- 提高神经网络的学习方式Improving the way neural networks learn
When a golf player is first learning to play golf, they usually spend most of their time developing ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- 神经网络指南Hacker's guide to Neural Networks
Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of ...
- NEURAL NETWORKS, PART 2: THE NEURON
NEURAL NETWORKS, PART 2: THE NEURON A neuron is a very basic classifier. It takes a number of input ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
随机推荐
- C#_ 项目打包附加数据库
C#_ 项目打包附加数据库 2010-07-11 23:22:45| 分类: Winfrom|举报|字号 订阅 实现效果:安装项目时直接附加数据库. 1.首先在需要部 署的项目的解决方案资源 ...
- SecureCRT使用教程
Secure CRT是一款支持 SSH2.SSH1.Telnet.Telnet/SSH.Relogin.Serial.TAPI.RAW 等协议的终端仿真程序,最吸引我的是,SecureCRT 支持标签 ...
- javascript如何列出全局对象的非原生属性。
Why 研究一个网站前端技术的时候,了解它的全局的对象是一个好的入口, 一般来说,常见的库就会用外观模式,最后暴露一个对象给用户调用, 比如jQuery,requirejs,angular,react ...
- Hadoop书籍汇总
<Hadoop实战>陆嘉恒 <Hadoop - The Definitive Guide>Tom White,中文版<Hadoop权威指南> <Hadoop技 ...
- HTML5本地化应用开发-HTML5 Web存储详解
文章不是简单的的Ctrl C与V,而是一个字一个标点符号慢慢写出来的.我认为这才是是对读者的负责,本教程由技术爱好者成笑笑(博客:http://www.chengxiaoxiao.com/)写作完成. ...
- struts启动报错Javassist library is missing
很久不用struts2,最近在配置的时候,启动服务器报错 Caused by: java.lang.ExceptionInInitializerError at com.opensymphony.xw ...
- (转)教你如何使用php session
PHP session用法其实很简单它可以把用户提交的数据以全局变量形式保存在一个session中并且会生成一个唯一的session_id,这样就是为了多了不会产生混乱了,并且session中同一浏览 ...
- POJ 1631 Bridging signals(LIS O(nlogn)算法)
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...
- BestCoder Round #85 sum
大晚上的更一道下午的水题吧.(虽然WA了好多次= =,但真实情况是我比较水) 描述 Given a sequence, you're asked whether there exists a cons ...
- (转)Android开发:性能最佳实践-管理应用内存
翻自:http://developer.android.com/training/articles/memory.html 在任何软件开发环境中,RAM都是宝贵的资源,但在移动操作系统中更加珍贵.尽管 ...