Ural 1258 镜面对称
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std; const double eps = 1e-;
const double PI = acos(-1.0);
const double INF = 1000000000000000.000; struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} ///向量(x,y)的极角用atan2(y,x);
inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
inline double Length(Vector A) { return sqrt(Dot(A,A)); }
inline double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; } Point read_point(){
Point A;
scanf("%lf %lf",&A.x,&A.y);
return A;
} /*************************************分 割 线*****************************************/ int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
double W,D;
Point S,T;
char s[]; scanf("%lf %lf",&W,&D);
double x,y;
scanf("%lf %lf",&x,&y);
S = Point(-x,y);
scanf("%lf %lf",&x,&y);
T = Point(-x,y);
scanf("%s",s);
int len = strlen(s); for(int i=;i<len;i++){
if(s[i] == 'F'){
S.y = -S.y;
}
else if(s[i] == 'L'){
S.x = -S.x;
}
else if(s[i] == 'B'){
S.y = *D -S.y;
}
if(s[i] == 'R'){
S.x = -*W-S.x;
}
//cout<<S.x<<" "<<S.y<<endl;
}
double ans = Length(S-T); printf("%.4lf\n",ans);
}
Ural 1258 镜面对称的更多相关文章
- hdu 1258 Sum It Up(dfs+去重)
题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...
- POJ 1258
http://poj.org/problem?id=1258 今天晚上随便找了两道题,没想到两道都是我第一次碰到的类型———最小生成树.我以前并没有见过,也不知道怎么做,然后就看书,思路很容易理解 但 ...
- 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome
题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...
- ural 2071. Juice Cocktails
2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...
- ural 2073. Log Files
2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...
- ural 2070. Interesting Numbers
2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...
- ural 2069. Hard Rock
2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...
- ural 2068. Game of Nuts
2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...
- ural 2067. Friends and Berries
2067. Friends and Berries Time limit: 2.0 secondMemory limit: 64 MB There is a group of n children. ...
随机推荐
- 线程池ThreadPoolExecutor使用简介
一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...
- 通过调整表union all的顺序优化SQL
操作系统:Windows XP 数据库版本:SQL Server 2005 今天遇到一个SQL,过滤条件是自动生成的,因此,没法通过调整SQL的谓词达到优化的目的,只能去找SQL中的“大表”.有一个视 ...
- c#数组的交集,差集,并集
, , , , }; , , , , }; // 差集 var z1 = x.Except(y); foreach (var i in z1) { Console.Write(i + " & ...
- php redis 【摘自网上,只为参考】
ubuntu下安装php redis sudo apt-get install redis-server 测试redis是否安装成功:注意:要开启redis redis-cliset test hel ...
- macbook pro retina 编程字体推荐
使用VS2010.VS2012.Qt Creator编译工具首推等宽字体,等宽字体中consolas. 首先大家都知道等宽对于编码来说的直观性不言而喻,其次retina屏幕的特殊性,整天用特别小的字体 ...
- C++ 虚函数与纯虚函数
#include<iostream> #include<string> using namespace std; class A{ public: virtual void f ...
- ASP.NET中扩展FileUpload的上传文件的容量
ASP.NET中扩展FileUpload只能上传小的文件,大小在4MB以内的.如果是上传大一点的图片类的可以在web.config里面扩展一下大小,代码如下 <system.web> &l ...
- [CSS]float&clear浮动
CSS float 属性 浮动的框可以向左或向右移动,直到它的外边缘碰到包含框或另一个浮动框的边框为止. 由于浮动框不在文档的普通流中,所以文档的普通流中的块框表现得就像浮动框不存在一样. 可取的值 ...
- 4537: [Hnoi2016]最小公倍数
Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...
- 各浏览器Cookie大小、个数限制
一.浏览器允许每个域名所包含的cookie数: Microsoft指出InternetExplorer8增加cookie限制为每个域名50个,但IE7似乎也允许每个域名50个cookie. Firef ...