这道题我一上来只会80

还是要感谢题解区大佬题解的帮助

先考虑若\(xy,xz\)为完全平方数,则\(yz\)也为完全平方数,因为\(xy*xz=x^2yz\)为完全平方数,除掉\(x^2\)就行了

所以所有两两乘积为完全平方数的数可以放在一个集合中,用并查集合并即可.

若每个并查集都是一种颜色,所以现在问题变成有\(m\)种颜色的互不相同的球,每种颜色的球有\(b_i\)个,问多少种球的排列满足同色球不相邻

先把所有球按颜色大小排个序,然后考虑dp,设\(f[i][j][k]\)表示前\(i\)个球,有\(j\)个和\(i\)不同色且相邻的同色球对数,有\(k\)个和\(i\)同色且相邻的同色球对数的方案

如果当前球与上一个球不同色,那么考虑把这个球插入到同色球之间,方案为\(f[i-1][k][j-k+1]*(j+1)\)

插到异色球中,方案为\(f[i-1][k][j-k]*(i-j)\)

如果该球与上一个球颜色相同,这里先设\(cnt\)表示前面放了几个这样颜色的球

把这个球插到和这个球同色的球旁边,方案为\(f[i-1][j][k-1]*(cnt*2-(k-1))\)

插到其他同色球之间,方案为\(f[i-1][j+1][k]*(j+1)\)

插到其他异色球之间,方案为\(f[i-1][j][k]*(i-(cnt*2-k+j))\)

答案就是\(f[n][0][0]\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<complex>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#define LL long long
#define il inline
#define re register using namespace std;
const LL mod=1000000007;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n;
LL a[310],f[2][310][310];
int fa[310];
int findf(int x){return fa[x]==x?x:fa[x]=findf(fa[x]);}
void merg(int x,int y){fa[findf(y)]=findf(x);} int main()
{
n=rd();
for(int i=1;i<=n;i++) a[i]=rd(),fa[i]=i;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(findf(i)==findf(j)) continue;
LL mu=a[i]*a[j],sq=sqrt(mu);
if(sq*sq==mu) merg(i,j);
}
for(int i=1;i<=n;i++) a[i]=findf(i);
sort(a+1,a+n+1);
int now=1,la=0;
f[0][0][0]=1;
for(int i=1,cnt=0;i<=n;i++)
{
memset(f[now],0,sizeof(f[now]));
if(a[i]!=a[i-1])
{
cnt=0;
for(int j=0;j<i;j++)
{
for(int k=0;k<=j+1;k++)
{
if(k<=j) f[now][j][0]=(f[now][j][0]+(f[la][k][j-k]*(i-j))%mod)%mod;
f[now][j][0]=(f[now][j][0]+(f[la][k][j-k+1]*(j+1))%mod)%mod;
}
}
}
else
{
for(int j=0;j<i;j++)
for(int k=0;k<=cnt;k++)
{
if(k>0) f[now][j][k]=(f[now][j][k]+(f[la][j][k-1]*(cnt*2-(k-1)))%mod)%mod;
if(i-(cnt*2-k+j)>0) f[now][j][k]=(f[now][j][k]+(f[la][j][k]*(i-(cnt*2-k+j)))%mod)%mod;
f[now][j][k]=(f[now][j][k]+(f[la][j+1][k]*(j+1))%mod)%mod;
}
}
now^=1,la^=1;
++cnt;
}
printf("%lld\n",f[la][0][0]);
return 0;
}

luogu P4448 [AHOI2018初中组]球球的排列的更多相关文章

  1. 【Luogu4448】 [AHOI2018初中组]球球的排列

    题意 有 \(n\) 个球球,每个球球有一个属性值 .一个合法的排列满足不存在相邻两个球球的属性值乘积是完全平方数.求合法的排列数量对 \(10^9+7\) 取膜. \(n\le 300\) (本题数 ...

  2. TYVJ4623 球球大作战·生存

    时间: 500ms / 空间: 65536KiB / Java类名: Main 背景 小天很喜欢玩球球大作战这个游戏,大家也应该都玩过.游戏规则是:移动自己的球,移动到别人的球(一定要比自己的球小)的 ...

  3. 【204】显示3D大球球

    1. 光滑球  From Jan 28, 2016    2. 大球球 https://www.revolvermaps.com/?target=enlarge&i=0xoqkxnu52c&a ...

  4. java实现简单窗体小游戏----球球大作战

    java实现简单窗体小游戏----球球大作战需求分析1.分析小球的属性: ​ 坐标.大小.颜色.方向.速度 2.抽象类:Ball ​ 设计类:BallMain—创建窗体 ​ BallJPanel—画小 ...

  5. Creator3D 守护你的球球—UV动画与天空盒

    1 游戏预览 在线体验地址:http://example.creator-star.cn/follo-ball/ 2 场景物体 场景物体 新建场景后,引擎会为我们创建默认的摄像机和灯光,这个我们就不介 ...

  6. 第四届西安邮电大学acm-icpc校赛 猜球球

    题目描述 六一到了,为了庆祝这个节日,好多商家都推出了很多好玩的小游戏.Tongtong看到了一个猜球球的游戏,有n种除了颜色之外完全相同的球,商家从中拿出来一个球球放到了箱子里,已知第i种颜色的球出 ...

  7. luogu P4798 [CEOI2015 Day1]卡尔文球锦标赛 dp 数位dp

    LINK:卡尔文球锦标赛 可以先思考一下合法的序列长什么样子. 可以发现后面的选手可以使用前面出现的编号也可以直接自己新建一个队. 其实有在任意时刻i 序列的mex>max.即要其前缀子序列中1 ...

  8. js实现动态球球背景

    document.getElementsByTagName("body")[0].style.backgroundColor="#000" //构造函数 fun ...

  9. [ACM] 1007 -球球方格

    与兔子方格类似,不过一秒走一格: 输入 代码 #include<iostream> using namespace std; int main(void) { int test_count ...

随机推荐

  1. html DOM簡介

    DOM:文檔對象模型 dom分為3類,核心DOM.xml DOM.HTML DOM: 核心DOM:針對任何結構化文檔的標準模型: xml DOM:針對xml的標準模型,定義了所有的元素的對象和屬性,以 ...

  2. 核化主成分分析(Kernel PCA)应用及调参

    核化这个概念在很多机器学习方法中都有应用,如SVM,PCA等.在此结合sklearn中的KPCA说说核函数具体怎么来用. KPCA和PCA都是用来做无监督数据处理的,但是有一点不一样.PCA是降维,把 ...

  3. idea 项目打包发布

    clean install -Dmaven.test.skip=true -pl 项目名(maven为准) -am -amd

  4. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  5. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  6. 自学Zabbix3.12.6-动作Action-Escalations配置

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 3.12.6 自学Zabbix3.12.6-动作Action-Escalations配置 1. 概 ...

  7. suoi21 高能显示屏 (cdq分治)

    可以把翻倍的操作看作是一个查询和修改(增加刚查询得来的值)的符合操作,然后做cdq就行了 #include<bits/stdc++.h> #define pa pair<int,in ...

  8. Power BI 实现实时更新Streaming Dataset

    一.在PowerBI portal端需要准备的操作: 1. https://app.powerbi.cn 登陆,点击左侧My Workspace,你需要有一个账号 2. 选入Datasets,点击页面 ...

  9. 经典的GDB调试命令

    在你调试程序时,当程序被停住时,你可以使用print命令(简写命令为p),或是同义命令inspect来查看当前程序的运行数据.print命令的格式是: printprint /是表达式,是你所调试的程 ...

  10. Java: |(或运算) 与 多选判断

    今天需要在程序中做一个多选判断,突然想起以前经常遇到的 x |= y | z; 这样的,我也明白这个是多选的用意,但为什么能达到我们希望的多选操作,我还真的没去研究过. 今天早上,百度了一下,搜索到了 ...