题意:Tomato要在服务器上激活一个游戏,一开始服务器序列中有N个人,他排在第M位,每次服务器会对序列中第一位的玩家进行激活,有四种结果:

1.有p1的概率会激活失败,这时候序列的状态是不变的。
2.有p2的概率第一位的玩家会连接错误,这时候序列中第一位的玩家会成为最后一位,其他玩家相对位置不变。
3.有p3的概率第一位的玩家激活成功,这时候第一位的玩家会离开序列。
4.有p4的概率服务器崩溃,发生这件事之后所有玩家都不能激活了。
求Tomato遇到服务器崩溃并且在服务器崩溃时处于前K位的概率。

解法:这道题是一道非常好的概率DP题。必须一步一步来全部理解之后自己写一遍。

首先是设计状态dp[i]j[]代表队伍有i个人主角现在拍第j的概率。

写出状态转移方程(搭配题意写):

j==1 ,dp[i][j]=p1dp[i][j]+p2dp[i][i]

1<j<=k ,dp[i][j]=p1dp[i][j]+p2dp[i][j-1]+p3dp[i-1][j-1]+p4

j>k ,dp[i][j]=p1dp[i][j]+p2dp[i][j-1]+p3dp[i-1][j-1]

初步化简上诉式子:

其中 pp=1/(1-p1)

j==1 ,dp[i][j]=pp*p2dp[i][i]

1<j<=k ,dp[i][j]=pp*p2dp[i][j-1]+pp*p3dp[i-1][j-1]+pp*p4

j>k ,dp[i][j]=pp*p2dp[i][j-1]+pp*p3dp[i-1][j-1]

深度抽象上诉式子:

j==1 ,dp[i][j]=k[j] * dp[i][i] + b[j]

1<j<=k ,dp[i][j]=k[j] * dp[i][j-1] + b[j]

j>k ,dp[i][j]=k[j] * dp[i][j-1] + b[j]

(为什么是这样:我们仔细观察初步化简的式子:每一个方程右边除了dp[i][i]/dp[i][j-1]是与i同阶的,后面的都是i-1阶的,因为我们是一层一层做dp的,也就是说后面的可以看成是常数,所以这里的kj和bj具体是什么我们先根据初步化简的式子求出来放到数组里当成常数然后就不用管了)

我们仔细观察上诉深度化简的式子,发现其实第i阶就是有n个变量dp[i][j],然后有n个不同的方程,那么就一定可以用高斯消元解出方程!!!

但是再次仔细观察发现:欸!这n个方程结构很简单恰好形成了个环形!!那么我们就可以利用这点直接先解出一个未知数,然后递推出全部的未知数!

怎么解?

我们用笨方法模拟一下:假设只有3个未知数

dp1=k1dp3+c1

dp2=k2( k1dp3 + c1 ) +c2

dp3=k3( k2( k1dp3 + c1 ) +c2 ) + c3

我们尝试把dp3化简:  dp3=k3k2k1dp3 + k3k2c1 + k3c2 + c3

那么规律不就出来了吗!

于是我们解出dp[i][i]再解出dp[i][1],然后就可以愉快地递推后面的值了。

#include<bits/stdc++.h>
using namespace std;
const int N=2e3+;
const double eps=1e-;
int n,m,K;
double p1,p2,p3,p4,pp,p14;
double k[N],b[N],dp[N][N]; void init() {
for (int i=;i<=n;i++) k[i]=b[i]=;
for (int i=;i<=n;i++) for (int j=;j<=n;j++) dp[i][j]=;
} int main()
{
while (cin>>n && n) {
cin>>m>>K;
cin>>p1>>p2>>p3>>p4;
init();
if (fabs(p4)<eps) {
printf("%.5lf\n",); continue;
}
pp=1.0/(1.0-p1); p14=1.0/(1.0-p1-p4); for (int i=;i<=n;i++) k[i]=pp*p2; dp[][]=p4/(-p1-p2);
for (int i=;i<=n;i++) {
b[]=pp*p4;
for (int j=;j<=K;j++) b[j]=pp*p3*dp[i-][j-]+pp*p4;
for (int j=K+;j<=i;j++) b[j]=pp*p3*dp[i-][j-]; double kk=1.0,bb=;
for (int j=i;j;j--) {
bb+=kk*b[j];
kk=k[j]*kk;
} dp[i][i]=bb/(1.0-kk);
dp[i][]=k[]*dp[i][i]+b[];
for (int j=;j<i;j++) dp[i][j]=k[j]*dp[i][j-]+b[j];
}
printf("%.5lf\n",dp[n][m]);
}
return ;
}

HDU4089/Uva1498 Activation 概率DP(好题)的更多相关文章

  1. 13年山东省赛 The number of steps(概率dp水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud The number of steps Time Limit: 1 Sec  Me ...

  2. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  3. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  4. [HDU4089]Activation(概率DP)

    HDU4089 题意:有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有一下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排 ...

  5. HDU 4089 Activation 概率DP 难度:3

    http://acm.hdu.edu.cn/showproblem.php?pid=4089 这道题中一共有两个循环: 1.事件1 如果一直落在Activation failed事件上,那么就会重新继 ...

  6. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  7. hdu4405Aeroplane chess 概率dp水题

    //从0到n有n+1个格子 //对于格子i,掷一次骰子的数为x.那么能够从位置i到位置i+x //格子之间有连线,假设格子a和b有连线,那么从a到b不用掷骰子 //求从0到n的骰子掷的次数的期望 // ...

  8. 【BZOJ1426】收集邮票 概率DP 论文题 推公式题

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  9. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

随机推荐

  1. Centos7硬盘空间扩容(vmware虚拟机)

    1. 查看系统挂载点 df -h 2. 系统关机 init 0 硬盘1空间修改为100G,保存并启动 3.查看磁盘 fdisk -l /dev/sda空间加上去了 3. 硬盘分区 fdisk /dev ...

  2. Web自动化-浏览器驱动chromedriver安装方法

    1.python中安装好selenium包  pip install selenium 2.根据以下驱动对照表下载Chrome对驱动   chromedriver版本 支持的Chrome版本 v2.3 ...

  3. ES6中的export和import

    1.ES6中的模块加载 ES6 模块是编译时加载,编译时就能确定模块的依赖关系,以及输入和输出的变量,相比于CommonJS 和 AMD 模块都只能在运行时确定输入输出变量的加载效率要高. 1.1.严 ...

  4. 最大独立点集&最小点覆盖

    1.最大独立点集: 在二分图中,选最多的点,使得任意两个点之间没有直接边连接. 最大独立集= 最小边覆盖 = 总点数- 最大匹配 (条件:在二分图中) 2.最小边覆盖: 在二分图中,求最少的边,使得他 ...

  5. [CSP-S模拟测试]:Walk(树的直径+数学)

    题目描述 给定一棵$n$个节点的树,每条边的长度为$1$,同时有一个权值$w$.定义一条路径的权值为路径上所有边的权值的最大公约数.现在对于任意$i\in [1,n]$,求树上所有长度为$i$的简单路 ...

  6. python&数据分析&数据挖掘--参考资料推荐书籍

    1.要用python做数据分析,先得对python语言熟悉,推荐一本入门书 :笨方法学python (learn python the hard way),这本书用非常有趣的讲述方式介绍了python ...

  7. list_car()函数小记

    一 ,list_car  ,前端传过来参数字典,从字典中获取参数 二, 根据参数去数据库中查找,条件查找 三,将查找出来的对象,flask_sqlalchemy.BaseQuery,然后通过这个对象的 ...

  8. Bing Advanced Search Tricks You Should Know

    Bing is one of the world's most popular search engines that has gained many fans with its ease of us ...

  9. Tomcat各个版本的下载地址包括源码

    Tomcat各个版本的下载地址包括源码: http://archive.apache.org/dist/tomcat **************** 选择版本 **************** ** ...

  10. Emqtt集群搭建

    1 Emqtt简单搭建 1.1  介绍:EMQ:EMQ 2.0,号称百万级开源MQTT消息服务器,基于Erlang/OTP语言平台开发,支持大规模连接和分布式集群,发布订阅模式的开源MQTT消息服务器 ...