POJ1523 SPF 单点故障
题意很简单,求删除割点后原先割点所在的无向连通图被分成了几个连通部分(原题说prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network,阻止至少一对可用节点能够在先前完全连接的网络上进行通信,所以输入的图不保证连通)
对于每个割点
- 如果它是根节点,则答案=DFS树的子树数量
- 如果它是非根节点,则答案=孩子low值>=当前结点的dfn值的孩子数
注意要扫描所有的点从未访问的点开始DFS!
还有多组数据记得清空数组!
代码如下(我绝对不会告诉你们我因为写错了输出格式而调了一上午)
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cstring>
using namespace std;
#define re register int
struct edge
{
int to,pre;
}edges[];//邻接表
int head[],tot,dfn[],dfs_clock;
int ans[];//删去结点i后连通分量的个数
int read()
{
int f=,x=;
char c=getchar();
while(!isdigit(c))
{
f=f|c=='-';
c=getchar();
}
while(isdigit(c))
{
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return x;
}
void add(int x,int y)
{
edges[++tot].to=y;
edges[tot].pre=head[x];
head[x]=tot;
}
int tarjan(int u,int fa)
{
int lowu=dfn[u]=++dfs_clock,child=;
ans[u]=;
for(re i=head[u];i;i=edges[i].pre)
if(!dfn[edges[i].to])
{
child++;
int lowv=tarjan(edges[i].to,u);
lowu=min(lowu,lowv);
if(lowv>=dfn[u])//有一个孩子满足,连通分量+1
ans[u]++;
}
else if(edges[i].to!=fa)
lowu=min(lowu,dfn[edges[i].to]);
if(u==fa)//根节点删去后连通分量数=子树个数
ans[u]=child;
return lowu;
}
int main()
{
int t=,x,y;
while(x=read())
{
memset(edges+,,<<),memset(head+,,<<),memset(dfn+,,<<);
tot=dfs_clock=;
t++;
y=read();
int n=max(x,y);
add(x,y),add(y,x);
while(x=read())
{
y=read();
n=max(max(x,y),n);
add(x,y),add(y,x);
}
tarjan(,);
printf("Network #%d\n",t);
int pd=;
for(re i=;i<=n;i++)
if(ans[i]>)
{
pd=;
printf(" SPF node %d leaves %d subnets\n",i,ans[i]);
}
if(!pd)
printf(" No SPF nodes\n");
printf("\n");
}
return ;
}
SPF 单点故障
POJ1523 SPF 单点故障的更多相关文章
- POJ1523 SPF[无向图割点]
SPF Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8139 Accepted: 3723 Description C ...
- POJ1523 SPF
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8254 Accepted: 3772 Description Consi ...
- POJ1523 SPF(割点模板)
题目求一个无向图的所有割点,并输出删除这些割点后形成几个连通分量.用Tarjan算法: 一遍DFS,构造出一颗深度优先生成树,在原无向图中边分成了两种:树边(生成树上的边)和反祖边(非生成树上的边). ...
- POJ1523:SPF(无向连通图求割点)
题目:http://poj.org/problem?id=1523 题目解析: 注意题目输入输入,防止PE,题目就是求割点,并问割点将这个连通图分成了几个子图,算是模版题吧. #include < ...
- poj图论解题报告索引
最短路径: poj1125 - Stockbroker Grapevine(多源最短路径,floyd) poj1502 - MPI Maelstrom(单源最短路径,dijkstra,bellman- ...
- Tarjan求割点和桥
by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...
- POJ1523:SPF——题解
http://poj.org/problem?id=1523 这题明显就是求割点然后求割完之后的强连通分量的个数. 割点都会求,怎么求割完的分量个数呢? 我们可以通过万能的并查集啊!(具体做法看代码吧 ...
- POJ 1523 SPF(求割点)
题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...
- POJ 1523 SPF 割点与桥的推断算法-Tarjan
题目链接: POJ1523 题意: 问一个连通的网络中有多少个关节点,这些关节点分别能把网络分成几部分 题解: Tarjan 算法模板题 顺序遍历整个图,能够得到一棵生成树: 树边:可理解为在DFS过 ...
随机推荐
- leetcode 342. 4的幂(python)
1. 题目描述 给定一个整数 (32 位有符号整数),请编写一个函数来判断它是否是 4 的幂次方. 示例 1: 输入: 16输出: true示例 2: 输入: 5输出: false 2. 思路 参考: ...
- delphi将程序最小化至右下角
程序新手,如果有不恰当的地方,请大家帮忙改正! 1.下载并安装Raize.v5.5控件,delphi版本为:delphi 7.0. 2.添加RzTrayIcon控件.PopupMenu控件至窗体上. ...
- Linux常用命令梳理——文件管理(一)
由于本人目前仍是萌新一枚,所以<Linux常用命令梳理>系列仅依照个人目前掌握的知识,对一部分命令进行梳理,目的是为了对之前学到的知识进行巩固.当然了,如果机缘巧合被大家看到了,也欢迎各位 ...
- Python_ONLINE_习题集_1 递归
1.1 使用递归实现:计算某个数的阶乘 def func(x): if x == 2: return 2 else: return x*func(x-1) a = func(4) print(a) 2 ...
- 第五周课程总结&试验报告(三
实验三 String类的应用 实验目的 掌握类String类的使用: 学会使用JDK帮助文档: 实验内容 1.已知字符串:"this is a test of java".按要求执 ...
- [Git] 024 log 命令的补充
0. 回顾 [Git] 009 逆转未来 的 "1" 画张导图 其实 --oneline 前有个"关键字参数" "--pretty" --o ...
- CAS单点登录系统入门--分布式登录验证
1.开源单点登录系统CAS入门 1.1 什么是单点登录 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要 ...
- nginx运行出现 file not found 错误处理原因
在阿里云装nginx+php+mysql nginx运行出现 file not found 错误处理原因 1,第一情况 location ~ \.php$ { # root html; fastcgi ...
- BZOJ 5317: [Jsoi2018]部落战争
传送门 写出式子,若存在 $a \in A$,$b \in B$,使得 $b+v=a$,那么此方案会产生冲突 即存在 $a \in A$,$b \in B$,使得 $v=a+(-b)$,设 $C=A+ ...
- Linux中设置别名alias永久生效
现在有个项目目录位于/var/www/html/tp5下 这也是我经常用到的工作目录 为了避免每次进入此目录 都需要输入 cd /var/www/html/tp5 可以加上述命令加入别名 alias ...