Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu

Submit
Status

Description

You will be given two sets of integers. Let's call them set A and set
B. Set A contains n elements and set
B contains m elements. You have to remove
k1
elements from set A and k2 elements from set
B so that of the remaining values no integer in set B is a multiple of any integer in set
A. k1 should be in the range
[0, n]
and k2 in the range [0, m].

You have to find the value of (k1 + k2) such that
(k1 + k2) is as low as possible. P is a multiple of
Q if there is some integer K such that
P
= K * Q.

Suppose set A is {2, 3, 4, 5} and set
B
is {6, 7, 8, 9}. By removing 2 and
3
from A and 8 from B, we get the sets
{4, 5} and {6, 7, 9}. Here none of the integers
6, 7 or 9 is a multiple of 4 or
5.

So for this case the answer is 3 (two from set
A and one from set B).

Input

Input starts with an integer T (≤ 50), denoting the number of test cases.

The first line of each case starts with an integer n followed by
n positive integers. The second line starts with m followed by
m positive integers. Both n and m will be in the range
[1, 100]. Each element of the two sets will fit in a 32 bit signed integer.

Output

For each case of input, print the case number and the result.

Sample Input

2

4 2 3 4 5

4 6 7 8 9

3 100 200 300

1 150

Sample Output

Case 1: 3

Case 2: 0

Source

Problem Setter: Sohel Hafiz
Special Thanks: Jane Alam Jan



给了两个集合A,B,分别有n,m个数,从A取k1个数,B取k2个数,使得b[ j ]%a[ i ]==0的情况不存在

刚开始以为可以暴力的,但是后来发现暴力真的是挺麻烦,把图画出来之后会发现,其实就是最小点覆盖,二分图性质:最小点覆盖=最大匹配,匈牙利算法跑一次

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
vector<int>map[200];
int used[200],pipei[200],a[200],b[200];
int n,m;
int find(int x)
{ for(int i=0;i<map[x].size();i++)
{
int y=map[x][i];
if(!used[y])
{
used[y]=1;
if(pipei[y]==-1||find(pipei[y]))
{
pipei[y]=x;
return 1;
}
}
}
return 0;
}
int main()
{
int t,k=1;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(pipei,-1,sizeof(pipei));
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
map[i].clear();
}
scanf("%d",&m);
for(int i=0;i<m;i++)
scanf("%d",&b[i]);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(b[j]%a[i]==0)
{
map[i].push_back(j);
}
}
}
int sum=0;
for(int i=0;i<n;i++)
{
memset(used,0,sizeof(used));
sum+=find(i);
}
printf("Case %d: %d\n",k++,sum);
}
return 0;
}

LightOJ--1149--Factors and Multiples(二分图好题)的更多相关文章

  1. light oj 1149 Factors and Multiples(二分匹配)

    LightOJ1149 :Factors and Multiples 时间限制:2000MS    内存限制:32768KByte   64位IO格式:%lld & %llu 描述 You w ...

  2. 【二分图裸题】poj1325机器调度

    题目大意:有两个机器A和B,A机器有n个模式,B机器有m个模式,两个机器最初在0模式 然后有k个作业,每个作业有三个参数i,a,b i代表作业编号,a和b代表第i作业要么在A机器的a模式下完成[或者] ...

  3. HDU - 1054 Strategic Game (二分图匹配模板题)

    二分图匹配模板题 #include <bits/stdc++.h> #define FOPI freopen("in.txt", "r", stdi ...

  4. POJ 3041 Asteroids(二分图模板题)

    Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N g ...

  5. Factors and Multiples

    Factors and Multiples   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Y ...

  6. (LightOJ 1149) Factors and Multiples

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1149 Description You will be given two sets o ...

  7. hdu1083二分图匹配模板题

    onsider a group of N students and P courses. Each student visits zero, one or more than one courses. ...

  8. 51nod 2006 飞行员配对(二分图最大匹配) 裸匈牙利算法 求二分图最大匹配题

    题目: 题目已经说了是最大二分匹配题, 查了一下最大二分匹配题有两种解法, 匈牙利算法和网络流. 看了一下觉得匈牙利算法更好理解, 然后我照着小红书模板打了一遍就过了. 匈牙利算法:先试着把没用过的左 ...

  9. lightoj 1148 Mad Counting(数学水题)

    lightoj 1148 Mad Counting 链接:http://lightoj.com/volume_showproblem.php?problem=1148 题意:民意调查,每一名公民都有盟 ...

随机推荐

  1. 可变长度参数列表(Stering...aaa)

  2. Django学习案例一(blog):二. 连接数据库

    本例使用了django默认的sqlite3数据库,配置文件不需要作调整: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite ...

  3. cmd 运行 svn 亲测!!!

    如果之前安装了svn客户端,但是一直提示svn停止工作的话就可以用cmd去操作svn更新和提交了:或者可以直接用别的代码IDE(包含svn插件的)去进行svn的操作. 接下来我说说windows如何用 ...

  4. 详解CorelDRAW智能填充工具的运用

    使用智能填充工具可以为任意的闭合区域填充颜色并设置轮廓.与其他填充工具不同,智能填充工具仅填充对象,它检测到区域的边缘并创建一个闭合路径,因此可以填充区域.例如,智能填充工具可以检测多个对象相交产生的 ...

  5. style 使用lang = ‘scss’ 报错

    <style lang="scss" rel="stylesheet/scss" scoped> .export-wrapper{ } </s ...

  6. esp32(M5STACK) ARDUINO开发环境搭建(ubuntu)

    首先去官网下载arduino https://www.arduino.cc/en/main/software         由于国产链接下载慢的缘故,所以可以采用百度网盘的方式进行下载,具体下载方法 ...

  7. 【剑指Offer】1、二维数组中的查找

      题目描述:   在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否 ...

  8. Linux基础:uniq命令总结

    本文只总结一些常用的用法,更详细的说明见man uniq和 uniq --help. uniq命令 uniq命令主要用于去重. 需要注意的是,不相邻的行不算重复值. 语法格式 Usage: uniq ...

  9. 类型转换、分支(day05)

    如果表达式里包含多个不同类型的数字就必须 首先把它们转换成同一个类型然后才能 计算 这个转换过程叫做隐式类型转换,完全由 计算机完成 隐式类型转换过程中一定把占地小的类型转换 成占地大的类型 如果不同 ...

  10. Nginx服务(端口80)

    Nginx安装: 一.编译安装 1.安装相应软件 yum install pcre pcre-devel openssl openssl-devel -y 2.检查: rpm -aq pcre pcr ...