Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu

Submit
Status

Description

You will be given two sets of integers. Let's call them set A and set
B. Set A contains n elements and set
B contains m elements. You have to remove
k1
elements from set A and k2 elements from set
B so that of the remaining values no integer in set B is a multiple of any integer in set
A. k1 should be in the range
[0, n]
and k2 in the range [0, m].

You have to find the value of (k1 + k2) such that
(k1 + k2) is as low as possible. P is a multiple of
Q if there is some integer K such that
P
= K * Q.

Suppose set A is {2, 3, 4, 5} and set
B
is {6, 7, 8, 9}. By removing 2 and
3
from A and 8 from B, we get the sets
{4, 5} and {6, 7, 9}. Here none of the integers
6, 7 or 9 is a multiple of 4 or
5.

So for this case the answer is 3 (two from set
A and one from set B).

Input

Input starts with an integer T (≤ 50), denoting the number of test cases.

The first line of each case starts with an integer n followed by
n positive integers. The second line starts with m followed by
m positive integers. Both n and m will be in the range
[1, 100]. Each element of the two sets will fit in a 32 bit signed integer.

Output

For each case of input, print the case number and the result.

Sample Input

2

4 2 3 4 5

4 6 7 8 9

3 100 200 300

1 150

Sample Output

Case 1: 3

Case 2: 0

Source

Problem Setter: Sohel Hafiz
Special Thanks: Jane Alam Jan



给了两个集合A,B,分别有n,m个数,从A取k1个数,B取k2个数,使得b[ j ]%a[ i ]==0的情况不存在

刚开始以为可以暴力的,但是后来发现暴力真的是挺麻烦,把图画出来之后会发现,其实就是最小点覆盖,二分图性质:最小点覆盖=最大匹配,匈牙利算法跑一次

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
vector<int>map[200];
int used[200],pipei[200],a[200],b[200];
int n,m;
int find(int x)
{ for(int i=0;i<map[x].size();i++)
{
int y=map[x][i];
if(!used[y])
{
used[y]=1;
if(pipei[y]==-1||find(pipei[y]))
{
pipei[y]=x;
return 1;
}
}
}
return 0;
}
int main()
{
int t,k=1;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(pipei,-1,sizeof(pipei));
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
map[i].clear();
}
scanf("%d",&m);
for(int i=0;i<m;i++)
scanf("%d",&b[i]);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(b[j]%a[i]==0)
{
map[i].push_back(j);
}
}
}
int sum=0;
for(int i=0;i<n;i++)
{
memset(used,0,sizeof(used));
sum+=find(i);
}
printf("Case %d: %d\n",k++,sum);
}
return 0;
}

LightOJ--1149--Factors and Multiples(二分图好题)的更多相关文章

  1. light oj 1149 Factors and Multiples(二分匹配)

    LightOJ1149 :Factors and Multiples 时间限制:2000MS    内存限制:32768KByte   64位IO格式:%lld & %llu 描述 You w ...

  2. 【二分图裸题】poj1325机器调度

    题目大意:有两个机器A和B,A机器有n个模式,B机器有m个模式,两个机器最初在0模式 然后有k个作业,每个作业有三个参数i,a,b i代表作业编号,a和b代表第i作业要么在A机器的a模式下完成[或者] ...

  3. HDU - 1054 Strategic Game (二分图匹配模板题)

    二分图匹配模板题 #include <bits/stdc++.h> #define FOPI freopen("in.txt", "r", stdi ...

  4. POJ 3041 Asteroids(二分图模板题)

    Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N g ...

  5. Factors and Multiples

    Factors and Multiples   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Y ...

  6. (LightOJ 1149) Factors and Multiples

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1149 Description You will be given two sets o ...

  7. hdu1083二分图匹配模板题

    onsider a group of N students and P courses. Each student visits zero, one or more than one courses. ...

  8. 51nod 2006 飞行员配对(二分图最大匹配) 裸匈牙利算法 求二分图最大匹配题

    题目: 题目已经说了是最大二分匹配题, 查了一下最大二分匹配题有两种解法, 匈牙利算法和网络流. 看了一下觉得匈牙利算法更好理解, 然后我照着小红书模板打了一遍就过了. 匈牙利算法:先试着把没用过的左 ...

  9. lightoj 1148 Mad Counting(数学水题)

    lightoj 1148 Mad Counting 链接:http://lightoj.com/volume_showproblem.php?problem=1148 题意:民意调查,每一名公民都有盟 ...

随机推荐

  1. IBMWebsphere 使用jar包删除文件

    1. 先使用ant打包一个jar包,删除其他不要的目录和文件,仅保留一个空的xxx.war文件夹("xxx"对应was上的工程安装根目录) 2. 在文件夹下新建一个META-INF ...

  2. 移动端弹性滑动以及vue记录滑动位置

    -webkit-overflow-scrolling介绍 -webkit-overflow-scrolling: auto | touch; auto: 普通滚动,当手指从触摸屏上移开,滚动立即停止 ...

  3. 如何通过putty软件远程登录并且控制linux平台

    准备备工作: 下载putty远程登录软件,图标如下 打开linux主机. Linux主机准备条件: 1 配置IP ,如果大家使用虚拟机的话建议通过vm1或者vm8进行与本地真实机进行连接,同时注意要避 ...

  4. android中复制图片

    activity_main.xml中的配置 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/androi ...

  5. Sobel算子取代:基于特定点方向的canny边缘检测

    前言: Canny边缘检测使用了Sobel算子,计算dx和dy两个方向,对于特定方向的边缘检测,可以作少量修改. 代码: 计算特定方向上的边缘 void CannyOrient( cv::Mat &a ...

  6. (转)基于Metronic的Bootstrap开发框架经验总结(5)--Bootstrap文件上传插件File Input的使用

    http://www.cnblogs.com/wuhuacong/p/4774396.html Bootstrap文件上传插件File Input是一个不错的文件上传控件,但是搜索使用到的案例不多,使 ...

  7. C#判断文件是否存在 //创建txt文件

    if(System.IO.File.Exists(@"")) { } if (System.IO.File.Exists(HttpRuntime.AppDomainAppPath ...

  8. 微信小程序中的iPhone X适配问题

    微信小程序中的iPhone X适配问题 小程序中下方的导航会被iPhone X下面的那条黑线盖住[微笑脸],所以要专门为了iPhone X做样式上的适配[微笑脸] wx.getSystemInfo({ ...

  9. Postgresql_最新版11.2源码编译安装

    pg官网:https://www.postgresql.org/ yum -y gcc gcc-c++ cmake ncurses-devel perl zlib* .去官网下载源码包. 下载地址:h ...

  10. loadrunner安装方法

    1.loadrunner安装网盘地址:  http://pan.baidu.com/s/1hrP6mDQ 一般会提示:“vc2005_sp1_with_atl_fix_redist 2.确认时提示缺少 ...