SDUT 1225-编辑距离(串型dp)
编辑距离
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描写叙述
我们把进行了一次上述三种操作的随意一种操作称为进行了一步字符基本操作。
以下我们定义两个字符串的编辑距离:对于两个字符串a和b。通过上述的基本操作,我们能够把a变成b或b变成a,那么字符串a变成字符串b须要的最少基本字符操作步数称为字符串a和字符串b的编辑距离。
比如:a="ABC",b="CBCD",则a与b的编辑距离为2。
你的任务就是:编一个高速的程序来计算随意两个字符串的编辑距离。
输入
每组測试数据一行。为字符串A和字符串B。
字符串的长度不大于1024,且全为字母。
输出
演示样例输入
ABC CBCD
演示样例输出
2
一開始想爆搜,一看范围傻了。。。串模型DP。
设dp[i][j]代表原始串从1到i位置上与目标串从1到j位置上的最短编辑距离。
dp[i][j]=min(dp[i][j-1]+1(删除b[j]),dp[i-1][j]+1(删除a[i]),a[i]==b[j]?dp[i-1][j-1]:dp[i-1][j-1]+1);
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <list>
#define ll long long
using namespace std;
const int INF = 0x3f3f3f3f;
int dp[1025][1025];
char a[1025],b[1025];
int My_min(int x,int y,int z)
{
return min(min(x,y),z);
}
int main()
{
while(~scanf("%s%s",a,b))
{
int lena=strlen(a),lenb=strlen(b);
for(int i=0;i<=lenb;i++)
dp[0][i]=i;
for(int i=0;i<=lena;i++)
dp[i][0]=i;
for(int i=1;i<=lena;i++)
for(int j=1;j<=lenb;j++)
dp[i][j]=My_min(dp[i-1][j]+1,dp[i][j-1]+1,a[i-1]==b[j-1]?dp[i-1][j-1]:dp[i-1][j-1]+1);
printf("%d\n",dp[lena][lenb]);
}
return 0;
}
SDUT 1225-编辑距离(串型dp)的更多相关文章
- 区间型DP
区间型DP是一类经典的动态规划问题,主要特征是可以先将大区间拆分成小区间求解最后由小区间的解得到大区间的解. 有三道例题 一.石子合并 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆. ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ_1088 滑雪(记忆型DP+DFS)
Description Michael喜欢滑雪,这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...
- UVA12186--树型DP
树型DP第一题...就是从boss到底层员工是一个树型结构,底层员工想加薪,如果每个boss都有超过T%的员工要求加薪,他就会往更高的bOSs传达,问如果让根节点的大boss接到加薪要求,最少要有多少 ...
- POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断
好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...
- 【XSY1905】【XSY2761】新访问计划 二分 树型DP
题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...
- 洛谷P3354 Riv河流 [IOI2005] 树型dp
正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...
- NYOJ 252 01串 普通dp
题目链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=252 分析: dp[2][0]=2;//表示长度为2的满足要求的且以0结尾的串个数 ...
- 【POJ 3140】 Contestants Division(树型dp)
id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS Memory Limit: 65536K Tot ...
随机推荐
- 【POJ 1222】 EXTENDED LIGHTS OUT
[题目链接] http://poj.org/problem?id=1222 [算法] 列出异或方程组,用高斯消元求解即可 [代码] #include <algorithm> #includ ...
- shp系列(六)——利用C++进行Dbf文件的写(创建)
上一篇介绍了shp文件的创建,接下来介绍dbf的创建. 推荐结合读取dbf的博客一起看! 推荐结合读取dbf的博客一起看! 推荐结合读取dbf的博客一起看! 1.Dbf头文件的创建 Dbf头文件的结构 ...
- 在linux上加速git clone
在linux上加速git clone 进入终端命令行模式,sudo vim /etc/hosts 编辑hosts文件,添加以下ip-域名,保存退出 151.101.44.249 github.glob ...
- RabbitMQ(三) 集群配置
RabbitMQ--集群配置 之前不管是搞Redis.SQL.Mongo还是其他的东西,一律都没说过集群要怎么搞,电脑实在是带不动.说透彻点就是懒,懒得搭也懒得写,今日深刻意识到错误,做学问是不能懒的 ...
- Core篇——初探IdentityServer4(客户端模式,密码模式)
Core篇——初探IdentityServer4(客户端模式,密码模式) 目录 1.Oatuth2协议的客户端模式介绍2.IdentityServer4客户端模式实现3.Oatuth2协议的密码模式介 ...
- .NET WebForm 简介(9.19)
WebForm是微软开发的一款产品,它将用户的请求和响应都封装为控件.让开发者认为自己是在操作一个windows界面.极大地提高了开发效率. WinForm是C/S(客户端) 主要是本机执行 WebF ...
- Arduino UNO R3
Arduino 常见型号 当然还有 LilyPad,附图: 最常见的自然是UNO,最新版是第三版R3: 国内也有一些改进的板子.我用的是一般的板子,拿到货也只能默默了. 简介 The Uno is a ...
- shell学习第一弹-初识
1.shell简介: shell是系统的用户界面,提供了用户与内核进行交互的一种接口.可以看做是用户与内核之间的一扇窗户.它接收用户输入的命令并把它送入内核执行. 常见的有bash,tcsh,csh, ...
- 第一个TensorFlow程序
第一个TensorFlow程序 TensorFlow的运行方式分为如下4步: (1)加载数据及定义超参数 (2)构建网络 (3)训练模型 (4)评估模型和进行预测 import tensorflow ...
- Pyhhon中一些常见的字符串操作.
可变变量:list, 字典 不可变变量:元祖,字符串 字符串的操作(去掉空格, 切片, 查找, 连接, 分割, 转换首字母大写, 转换字母大小写, 判断是否是数字字母, 成员运算符(in / not ...