不多说,直接上代码。

2016-12-12 21:54:04,509 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-12-12 21:54:05,166 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-12-12 21:54:05,169 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2016-12-12 21:54:05,477 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 3
2016-12-12 21:54:05,539 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:3
2016-12-12 21:54:05,810 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local1000661716_0001
2016-12-12 21:54:06,184 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2016-12-12 21:54:06,185 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local1000661716_0001
2016-12-12 21:54:06,193 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2016-12-12 21:54:06,220 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-12-12 21:54:06,297 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2016-12-12 21:54:06,314 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1000661716_0001_m_000000_0
2016-12-12 21:54:06,374 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 21:54:06,433 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@6b4d160c
2016-12-12 21:54:06,441 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/data/inverseIndex/b.txt:0+35
2016-12-12 21:54:06,515 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 21:54:06,516 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 21:54:06,517 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 21:54:06,517 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 21:54:06,517 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 21:54:06,544 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 21:54:06,567 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 21:54:06,567 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 21:54:06,567 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 21:54:06,568 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 130; bufvoid = 104857600
2016-12-12 21:54:06,568 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214376(104857504); length = 21/6553600
2016-12-12 21:54:06,590 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 21:54:06,599 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1000661716_0001_m_000000_0 is done. And is in the process of committing
2016-12-12 21:54:06,631 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 21:54:06,631 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1000661716_0001_m_000000_0' done.
2016-12-12 21:54:06,631 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1000661716_0001_m_000000_0
2016-12-12 21:54:06,631 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1000661716_0001_m_000001_0
2016-12-12 21:54:06,637 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 21:54:06,687 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@418b04a5
2016-12-12 21:54:06,691 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/data/inverseIndex/a.txt:0+33
2016-12-12 21:54:06,742 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 21:54:06,742 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 21:54:06,742 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 21:54:06,742 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 21:54:06,743 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 21:54:06,744 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 21:54:06,747 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 21:54:06,748 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 21:54:06,748 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 21:54:06,748 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 128; bufvoid = 104857600
2016-12-12 21:54:06,748 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214376(104857504); length = 21/6553600
2016-12-12 21:54:06,756 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 21:54:06,761 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1000661716_0001_m_000001_0 is done. And is in the process of committing
2016-12-12 21:54:06,766 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 21:54:06,766 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1000661716_0001_m_000001_0' done.
2016-12-12 21:54:06,766 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1000661716_0001_m_000001_0
2016-12-12 21:54:06,766 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1000661716_0001_m_000002_0
2016-12-12 21:54:06,769 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 21:54:06,797 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@30616f6c
2016-12-12 21:54:06,800 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/data/inverseIndex/c.txt:0+22
2016-12-12 21:54:06,879 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 21:54:06,879 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 21:54:06,879 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 21:54:06,880 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 21:54:06,880 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 21:54:06,881 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 21:54:06,884 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 21:54:06,884 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 21:54:06,884 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 21:54:06,884 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 86; bufvoid = 104857600
2016-12-12 21:54:06,884 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214384(104857536); length = 13/6553600
2016-12-12 21:54:06,891 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 21:54:06,895 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1000661716_0001_m_000002_0 is done. And is in the process of committing
2016-12-12 21:54:06,898 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 21:54:06,898 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1000661716_0001_m_000002_0' done.
2016-12-12 21:54:06,899 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1000661716_0001_m_000002_0
2016-12-12 21:54:06,899 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2016-12-12 21:54:06,903 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2016-12-12 21:54:06,903 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1000661716_0001_r_000000_0
2016-12-12 21:54:06,917 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 21:54:06,948 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@43234903
2016-12-12 21:54:06,954 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@a609d4
2016-12-12 21:54:06,979 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 21:54:06,996 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1000661716_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 21:54:07,040 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1000661716_0001_m_000000_0 decomp: 144 len: 148 to MEMORY
2016-12-12 21:54:07,052 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 144 bytes from map-output for attempt_local1000661716_0001_m_000000_0
2016-12-12 21:54:07,099 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 144, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->144
2016-12-12 21:54:07,103 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1000661716_0001_m_000001_0 decomp: 142 len: 146 to MEMORY
2016-12-12 21:54:07,105 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 142 bytes from map-output for attempt_local1000661716_0001_m_000001_0
2016-12-12 21:54:07,105 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 142, inMemoryMapOutputs.size() -> 2, commitMemory -> 144, usedMemory ->286
2016-12-12 21:54:07,110 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1000661716_0001_m_000002_0 decomp: 96 len: 100 to MEMORY
2016-12-12 21:54:07,112 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 96 bytes from map-output for attempt_local1000661716_0001_m_000002_0
2016-12-12 21:54:07,112 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 96, inMemoryMapOutputs.size() -> 3, commitMemory -> 286, usedMemory ->382
2016-12-12 21:54:07,113 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 21:54:07,114 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 3 / 3 copied.
2016-12-12 21:54:07,115 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 3 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 21:54:07,130 INFO [org.apache.hadoop.mapred.Merger] - Merging 3 sorted segments
2016-12-12 21:54:07,131 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 3 segments left of total size: 334 bytes
2016-12-12 21:54:07,133 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 3 segments, 382 bytes to disk to satisfy reduce memory limit
2016-12-12 21:54:07,133 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 382 bytes from disk
2016-12-12 21:54:07,134 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 21:54:07,134 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 21:54:07,136 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 362 bytes
2016-12-12 21:54:07,136 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 3 / 3 copied.
2016-12-12 21:54:07,144 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-12-12 21:54:07,163 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1000661716_0001_r_000000_0 is done. And is in the process of committing
2016-12-12 21:54:07,166 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 3 / 3 copied.
2016-12-12 21:54:07,166 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1000661716_0001_r_000000_0 is allowed to commit now
2016-12-12 21:54:07,172 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1000661716_0001_r_000000_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/InverseIndexStepOne/_temporary/0/task_local1000661716_0001_r_000000
2016-12-12 21:54:07,173 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 21:54:07,173 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1000661716_0001_r_000000_0' done.
2016-12-12 21:54:07,174 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1000661716_0001_r_000000_0
2016-12-12 21:54:07,174 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2016-12-12 21:54:07,189 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1000661716_0001 running in uber mode : false
2016-12-12 21:54:07,191 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2016-12-12 21:54:07,193 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1000661716_0001 completed successfully
2016-12-12 21:54:07,223 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 33
File System Counters
FILE: Number of bytes read=5146
FILE: Number of bytes written=777798
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=8
Map output records=16
Map output bytes=344
Map output materialized bytes=394
Input split bytes=396
Combine input records=0
Combine output records=0
Reduce input groups=9
Reduce shuffle bytes=394
Reduce input records=16
Reduce output records=9
Spilled Records=32
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=0
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=1460142080
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=90
File Output Format Counters
Bytes Written=150

2016-12-12 21:55:03,523 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-12-12 21:55:05,038 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-12-12 21:55:05,044 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2016-12-12 21:55:05,350 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 1
2016-12-12 21:55:05,428 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:1
2016-12-12 21:55:05,846 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local549789154_0001
2016-12-12 21:55:06,425 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2016-12-12 21:55:06,427 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local549789154_0001
2016-12-12 21:55:06,488 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2016-12-12 21:55:06,510 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-12-12 21:55:06,605 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2016-12-12 21:55:06,609 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local549789154_0001_m_000000_0
2016-12-12 21:55:06,691 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 21:55:06,728 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@550aaabb
2016-12-12 21:55:06,738 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/InverseIndexStepOne/part-r-00000:0+138
2016-12-12 21:55:06,821 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 21:55:06,821 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 21:55:06,821 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 21:55:06,821 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 21:55:06,821 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 21:55:06,828 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 21:55:06,851 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 21:55:06,852 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 21:55:06,852 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 21:55:06,852 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 138; bufvoid = 104857600
2016-12-12 21:55:06,852 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214364(104857456); length = 33/6553600
2016-12-12 21:55:06,882 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 21:55:06,895 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local549789154_0001_m_000000_0 is done. And is in the process of committing
2016-12-12 21:55:06,919 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 21:55:06,920 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local549789154_0001_m_000000_0' done.
2016-12-12 21:55:06,920 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local549789154_0001_m_000000_0
2016-12-12 21:55:06,921 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2016-12-12 21:55:06,927 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2016-12-12 21:55:06,928 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local549789154_0001_r_000000_0
2016-12-12 21:55:06,948 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 21:55:06,996 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@1c50c5b8
2016-12-12 21:55:07,002 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@311e2a2d
2016-12-12 21:55:07,024 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 21:55:07,029 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local549789154_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 21:55:07,073 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local549789154_0001_m_000000_0 decomp: 158 len: 162 to MEMORY
2016-12-12 21:55:07,079 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 158 bytes from map-output for attempt_local549789154_0001_m_000000_0
2016-12-12 21:55:07,154 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 158, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->158
2016-12-12 21:55:07,156 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 21:55:07,157 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 21:55:07,158 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 21:55:07,173 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 21:55:07,173 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 150 bytes
2016-12-12 21:55:07,175 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 1 segments, 158 bytes to disk to satisfy reduce memory limit
2016-12-12 21:55:07,176 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 162 bytes from disk
2016-12-12 21:55:07,177 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 21:55:07,177 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 21:55:07,179 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 150 bytes
2016-12-12 21:55:07,180 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 21:55:07,188 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-12-12 21:55:07,202 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local549789154_0001_r_000000_0 is done. And is in the process of committing
2016-12-12 21:55:07,206 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 21:55:07,206 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local549789154_0001_r_000000_0 is allowed to commit now
2016-12-12 21:55:07,217 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local549789154_0001_r_000000_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/InverseIndexStepTwo/_temporary/0/task_local549789154_0001_r_000000
2016-12-12 21:55:07,219 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 21:55:07,219 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local549789154_0001_r_000000_0' done.
2016-12-12 21:55:07,219 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local549789154_0001_r_000000_0
2016-12-12 21:55:07,223 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2016-12-12 21:55:07,431 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local549789154_0001 running in uber mode : false
2016-12-12 21:55:07,433 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2016-12-12 21:55:07,435 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local549789154_0001 completed successfully
2016-12-12 21:55:07,453 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 33
File System Counters
FILE: Number of bytes read=1072
FILE: Number of bytes written=386015
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=9
Map output records=9
Map output bytes=138
Map output materialized bytes=162
Input split bytes=145
Combine input records=0
Combine output records=0
Reduce input groups=3
Reduce shuffle bytes=162
Reduce input records=9
Reduce output records=3
Spilled Records=18
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=0
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=466616320
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=158
File Output Format Counters
Bytes Written=121

代码

package zhouls.bigdata.myMapReduce.InverseIndex;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
* 倒排索引步骤一job
*
*
*/
public class InverseIndexStepOne {

public static class StepOneMapper extends Mapper<LongWritable, Text, Text, LongWritable>{

@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {

//拿到一行数据
String line = value.toString();
//切分出各个单词
String[] fields = StringUtils.split(line, " ");

//获取这一行数据所在的文件切片
FileSplit inputSplit = (FileSplit) context.getInputSplit();
//从文件切片中获取文件名
String fileName = inputSplit.getPath().getName();

for(String field:fields){

//封装kv输出 , k : hello-->a.txt v: 1
context.write(new Text(field+"-->"+fileName), new LongWritable(1));

}

}

}

public static class StepOneReducer extends Reducer<Text, LongWritable, Text, LongWritable>{

// <hello-->a.txt,{1,1,1....}>
@Override
protected void reduce(Text key, Iterable<LongWritable> values,Context context)
throws IOException, InterruptedException {

long counter = 0;
for(LongWritable value:values){

counter += value.get();

}

context.write(key, new LongWritable(counter));
}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf);

job.setJarByClass(InverseIndexStepOne.class);

job.setMapperClass(StepOneMapper.class);
job.setReducerClass(StepOneReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);

// FileInputFormat.setInputPaths(job, new Path("hdfs://HadoopMaster:9000/inverseIndex/"));
//
// //检查一下参数所指定的输出路径是否存在,如果已存在,先删除
// Path output = new Path("hdfs://HadoopMaster:9000/out/InverseIndexStepOne/");
//

FileInputFormat.setInputPaths(job, new Path("./data/inverseIndex/"));

//检查一下参数所指定的输出路径是否存在,如果已存在,先删除
Path output = new Path("./out/InverseIndexStepOne");

FileSystem fs = FileSystem.get(conf);
if(fs.exists(output)){
fs.delete(output, true);
}

FileOutputFormat.setOutputPath(job, output);

System.exit(job.waitForCompletion(true)?0:1);

}

}

package zhouls.bigdata.myMapReduce.InverseIndex;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Reducer;

import zhouls.bigdata.myMapReduce.InverseIndex.InverseIndexStepOne.StepOneMapper;
import zhouls.bigdata.myMapReduce.InverseIndex.InverseIndexStepOne.StepOneReducer;

public class InverseIndexStepTwo {

public static class StepTwoMapper extends Mapper<LongWritable, Text, Text, Text>{

//k: 行起始偏移量 v: {hello-->a.txt 3}
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {

String line = value.toString();

String[] fields = StringUtils.split(line, "\t");
String[] wordAndfileName = StringUtils.split(fields[0], "-->");

String word = wordAndfileName[0];
String fileName = wordAndfileName[1];
long count = Long.parseLong(fields[1]);

context.write(new Text(word), new Text(fileName+"-->"+count));
//map输出的结果是这个形式 : <hello,a.txt-->3>

}
}

public static class StepTwoReducer extends Reducer<Text, Text,Text, Text>{

@Override
protected void reduce(Text key, Iterable<Text> values,Context context)
throws IOException, InterruptedException {

//拿到的数据 <hello,{a.txt-->3,b.txt-->2,c.txt-->1}>

String result = "";

for(Text value:values){

result += value + " ";
}

context.write(key, new Text(result));
//输出的结果就是 k: hello v: a.txt-->3 b.txt-->2 c.txt-->1

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

//先构造job_one
// Job job_one = Job.getInstance(conf);
//
// job_one.setJarByClass(InverseIndexStepTwo.class);
// job_one.setMapperClass(StepOneMapper.class);
// job_one.setReducerClass(StepOneReducer.class);
//......

//构造job_two
Job job_tow = Job.getInstance(conf);

job_tow.setJarByClass(InverseIndexStepTwo.class);

job_tow.setMapperClass(StepTwoMapper.class);
job_tow.setReducerClass(StepTwoReducer.class);

job_tow.setOutputKeyClass(Text.class);
job_tow.setOutputValueClass(Text.class);

// FileInputFormat.setInputPaths(job_tow, new Path("hdfs://HadoopMaster:9000/out/InverseIndexStepOne/"));
//
// //检查一下参数所指定的输出路径是否存在,如果已存在,先删除
// Path output = new Path("hdfs://HadoopMaster:9000/out/InverseIndexStepTwo/");

FileInputFormat.setInputPaths(job_tow, new Path("./out/InverseIndexStepOne"));

//检查一下参数所指定的输出路径是否存在,如果已存在,先删除
Path output = new Path("./out/InverseIndexStepTwo");

FileSystem fs = FileSystem.get(conf);
if(fs.exists(output)){
fs.delete(output, true);
}

FileOutputFormat.setOutputPath(job_tow, output);

//先提交job_one执行
// boolean one_result = job_one.waitForCompletion(true);
// if(one_result){
System.exit(job_tow.waitForCompletion(true)?0:1);
// }

}

}

Hadoop MapReduce编程 API入门系列之倒排索引(二十四)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之最短路径(十五)

    不多说,直接上代码. ======================================= Iteration: 1= Input path: out/shortestpath/input. ...

  2. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  4. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  5. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  6. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  7. Hadoop MapReduce编程 API入门系列之自定义多种输入格式数据类型和排序多种输出格式(十一)

    推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapredu ...

  8. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

  9. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

随机推荐

  1. dubbo介绍及实战

    1. dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封 ...

  2. REST ful

    前后端分离.面向资源.无状态: 请求包含全部信息. 什么是 REST? 下面六条准则定义了一个 REST 系统的特征: 客户-服务器(Client-Server),提供服务的服务器和使用服务的客户需要 ...

  3. js DOM 节点树 设置 style 样式属性

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  4. Java---23种设计模式(九)------组合模式

    一.什么是组合模式 组合模式(Composite Pattern),又叫部分整体模式,是用于把一组相似的对象当作一个单一的对象. 组合模式依据树形结构来组合对象,用来表示部分以及整体层次. 这种类型的 ...

  5. html第八节课

    导航 1.首先在<head>里面引用一个JQUERY的文件以用来制作鼠标点击动画效果(从网站上下载即可) 1 <script language="javascript&qu ...

  6. phpqrcode生成二维码

    这篇文章讲解得非常详细: https://www.jb51.net/article/136418.htm 备注一下: 如果遇到生成的二维码是一串乱码.只需要在代码最后加上 exit();即可解决,原理 ...

  7. openc下cv::Mat和IplImage的相互转换

    opencv2.0的类CV::Mat和opencv1.0的IplImage之间烦人转换: cv::Mat matimg = cv::imread ("girl.jpg"); Ipl ...

  8. Java Web学习总结(22)——使用kaptcha生成验证码

    kaptcha是一个简单好用的验证码生成工具,通过配置,可以自己定义验证码大小.颜色.显示的字符等等.下面就来讲一下如何使用kaptcha生成验证码以及在服务器端取出验证码进行校验. 一.搭建测试环境 ...

  9. asp.net--WebService知识点

    开头是这样的 [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = Wsi ...

  10. requestAnimationFrame实现浏览器兼容

    requestAnimationFrame是比setInterval更高效更平滑的动画实现. 兼容性查看:http://caniuse.mojijs.com/Home/Html/item/key/re ...