hdu 4059 The Boss on Mars
The Boss on Mars
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1934 Accepted Submission(s): 580
Due to no moons around Mars, the employees can only get the salaries per-year. There are n employees in ACM, and it’s time for them to get salaries from their boss. All employees are numbered from 1 to n. With the unknown reasons, if the employee’s work number
is k, he can get k^4 Mars dollars this year. So the employees working for the ACM are very rich.
Because the number of employees is so large that the boss of ACM must distribute too much money, he wants to fire the people whose work number is co-prime with n next year. Now the boss wants to know how much he will save after the dismissal.
2
4
5
82
354HintCase1: sum=1+3*3*3*3=82
Case2: sum=1+2*2*2*2+3*3*3*3+4*4*4*4=354
题解及代码:
这道题目的综合性还是非常强的。首先说一下题目,就是求小于n而且与n互素的数的四次方的和。
说一下思路吧:首先我们求出1---n-1的全部的数的四次方的和,之后将n进行素因子分解。求出n的全部因子,然后减去包括这些因子的数的四次方就能够了。
大体上的思路有了,来处理一下细节:1.首先我们要求出四次方和的公式 2.素数打表 3.求逆元(由于四次方和公式有一个分母,取余时要乘上逆元)
4.素因子分解 5.容斥原理
搞定这5步,我们这道题就能做了,所以说综合性很强。
详细见代码吧:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const long long mod=1000000007,q=233333335;//p为逆元,用费马小定理求出
bool prime[10010];
int p[1400];
int k=0; //四次方和计算公式
long long cal(long long n)
{
if(n==0) return 0;
return (n*(n+1)%mod*(2*n+1)%mod)%mod*((3*n*n+3*n-1)%mod*q%mod)%mod;
} //容斥原理
void dfs(int base,int num_p,long long n,long long m,long long nt,long long mu,long long &sum,long long tab_p[])
{
if(nt==m)
{
long long b=n/mu;
if(m%2==0)
{
sum=(sum-mu*mu%mod*mu%mod*mu%mod*cal(b)%mod+mod)%mod;
}
else
{
sum=(sum+mu*mu%mod*mu%mod*mu%mod*cal(b)%mod)%mod;
}
return;
}
for(long long i=base; i<num_p; i++)
{
dfs(i+1,num_p,n,m,nt+1,mu*tab_p[i],sum,tab_p);
}
} //素数打表
void isprime()
{
long long i,j;
memset(prime,true,sizeof(prime));
prime[0]=prime[1]=false;
for(i=2; i<10010; i++)
{
if(prime[i])
{
p[k++]=i;
for(j=i*i; j<10010; j+=i)
prime[j]=false;
}
}
} int main()
{
isprime();
long long n,ans,tab_p[1400];
int cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%I64d",&n);
n=n-1;
ans=cal(n);
long long m=n,t=n+1;
int num_p=0;
for(int i=0; i<k&&p[i]*p[i]<=t; i++) //素因子分解
if(t%p[i]==0)
{
tab_p[num_p++]=p[i];
while(t%p[i]==0)
{
t/=p[i];
}
}
if(t>1) tab_p[num_p++]=t; /*//输出測试
for(int i=0;i<num_p;i++)
{
printf("%d ",tab_p[i]);
}
puts("");
//測试结束
*/ long long sum=0;
for(int i=0; i<num_p; i++) //将不互素的部分减去
{
n=m/tab_p[i];
sum=(sum+tab_p[i]*tab_p[i]%mod*tab_p[i]%mod*tab_p[i]%mod*cal(n))%mod;
} for(long long i=2; i<=num_p; i++) //容斥部分求解
dfs(0,num_p,m,i,0LL,1LL,sum,tab_p); printf("%I64d\n",(ans-sum+mod)%mod);
}
return 0;
}
hdu 4059 The Boss on Mars的更多相关文章
- HDU 4059 The Boss on Mars 容斥原理
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)
传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- 数论 + 容斥 - HDU 4059 The Boss on Mars
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...
- HDU 4059 The Boss on Mars(容斥原理)
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4059 The Boss on Mars(纳入和排除)
http://acm.hdu.edu.cn/showproblem.php?pid=4059 定义S = 1^4 + 2^4 + 3^4+.....+n^4.如今减去与n互质的数的4次方.问共降低了多 ...
- hdu 4059 The Boss on Mars 容斥
题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我 ...
- hdu4059 The Boss on Mars(差分+容斥原理)
题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设 则 为一阶差分. 二阶差分: n阶差分: 且可推出 性质: 1. ...
- HDU 4059 容斥原理+快速幂+逆元
E - The Boss on Mars Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- The Boss on Mars
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
随机推荐
- WebStorm(Amaze开发工具)--JavaScript 开发工具
WebStorm(Amaze开发工具)--JavaScript 开发工具 一.总结 1.webstorm:前段开发神器,应该比sublime好用. 2.webstorm功能:支持显示图片宽高,标签重构 ...
- libcurl 通过http协议下载文件并显示下载进度
vc6 测试工程下载地址:http://download.csdn.net/detail/mtour/8068053 代码如下: size_t my_write_func(void *ptr, siz ...
- 洛谷——P1021 邮票面值设计
https://www.luogu.org/problem/show?pid=1021 题目描述 给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤15)种邮票的情况下(假定所有的邮票数量都 ...
- 三星Galaxy Tab S2上市,压制苹果之心凸显
平板市场正在迎来史上最为关键的一次PK,众所周知,平板市场的苹果和三星一直是行业的领头羊,而在激烈的竞争中.三星平板似乎后劲更足.众多性能优异的产品频频推出.平板之王的称谓呼之欲出. 去年三星 ...
- Session丢失原因与解决方案
win2003 server下的IIS6默认设置下对每个运行在默认应用池中的工作者进程都会经过20多个小时后自动回收该进程, 造成保存在该进程中的session丢失. 因为Session,Appl ...
- CentOS7安装docker 18.06
原文:CentOS7安装docker 18.06 一.CentOS Docker 安装 参考docker 官方网站:https://docs.docker.com/install/linux/dock ...
- POJ 2402 Palindrome Numbers(LA 2889) 回文数
POJ:http://poj.org/problem?id=2402 LA:https://icpcarchive.ecs.baylor.edu/index.php?option=com_online ...
- Log Explorer 使用说明(原创)
关于Log Explorer (我抄的) 介绍Log Explorer主要用于对MSSQLServer的事物分析和数据恢复.你可以浏览日志.导出数据.恢复被修改或者删除的数据(包括执行过update, ...
- BUFSIZ
转http://www.judymax.com/archives/262 今天在看示例程序时冒出来一句args = emalloc(BUFSIZ); BUFSIZ是什么意思,查了一下才明白. 这是st ...
- [RxJS] Multicasting shortcuts: publish() and variants
Because using multicast with a new Subject is such a common pattern, there is a shortcut in RxJS for ...