复活!qwq

题目来源:2018冬令营模拟测试赛(九)

题意:

【背景描述】

    不是所有王子都会遇见自己的中关村,主公,公主。

从前有个王子姓王,王王子遇到了一位美丽的公主,她的名字当然是公公主啦。

王王子对公公主一见钟情,他想方设法地去讨好公公主, 他准备了N个节目依次表演给公主看,每个节目他可以倒立表演,或者正常表演。王王子非常聪明,所以他总是能预估出每个节目的每种表演形式能刷多少好感度,我们记第i个节目倒立表演能增加Ai的好感度,正常表演能增加Bi的好感度。

这个公公主也不是一个省油的灯,他(没打错)看节目的时候既不喜欢太循规蹈矩,也不喜欢太标新立异。准确的说,他看的王子表演的任意连续K个节目里面,至少有P个倒立表演的节目,Q个正常表演的节目。

王王子想知道,在满足公公主的特殊癖好的前提下,他最多能刷多少的好感度。

【输入数据】

第一行四个整数N,K,P,Q。

接下来N行每行两个整数表示Ai和Bi。

【输出数据】

一行一个正整数表示答案。

【数据规模】

对于 20% 的数据,N < 16。

对于另外 30% 的数据, K < 10。

对于另外 30% 的数据, Ai, Bi < 4

对于 100% 的数据, 0 < N < 200, 0 < Ai, Bi < 10000000, 0 ≤ P + Q ≤ K ≤ N。

题解:

这种鬼畜题面和数据范围肯定就是网络流啦~

题目中一共有$N-K+1$个限制区间,显然一个节目倒立表演的话所有包含它的区间倒立表演的机会都少了一个;

那么可以把每个区间看成一个点,一个流量就表示一次倒立表演的机会,那么一个节目就会对应从最前的一个包含它的区间到最前的一个不包含它的区间的一条边,表示如果倒立表演,这些区间的机会都会减少一个(流量流掉了);

限制倒立的节目最多有多少个就相当于限制总流量,直接限制每个点到下一个点的边的流量即可;

加上最优的限制条件可以考虑先全选$A_i$,然后把费用设成$A_i-B_i$;

然后就是费用流随便跑了。

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
using namespace std;
typedef long long ll;
struct edge{
int v,w,z,next;
}a[];
int n,k,p,q,ans=,N,vs,vt,tot=,head[],sp[],fr[],s1[],s2[];
bool isin[];
void add(int u,int v,int w,int z){
a[++tot].v=v;
a[tot].w=w;
a[tot].z=z;
a[tot].next=head[u];
head[u]=tot;
a[++tot].v=u;
a[tot].w=;
a[tot].z=-z;
a[tot].next=head[v];
head[v]=tot;
}
bool spfa(){
int flw,mi=inf;
queue<int>q;
memset(isin,,sizeof(isin));
for(int i=;i<=N;i++)sp[i]=-inf;
q.push(vs);
isin[vs]=true;
sp[vs]=;
while(!q.empty()){
int u=q.front();
q.pop();
isin[u]=false;
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(sp[v]<sp[u]+a[tmp].z&&a[tmp].w){
fr[v]=tmp;
sp[v]=sp[u]+a[tmp].z;
if(!isin[v]){
q.push(v);
isin[v]=true;
}
}
}
}
if(sp[vt]==-inf)return false;
for(int i=vt;i!=vs;i=a[fr[i]^].v){
mi=min(mi,a[fr[i]].w);
}
for(int i=vt;i!=vs;i=a[fr[i]^].v){
ans+=mi*a[fr[i]].z;
a[fr[i]].w-=mi;
a[fr[i]^].w+=mi;
}
return true;
}
int main(){
memset(head,-,sizeof(head));
scanf("%d%d%d%d",&n,&k,&p,&q);
for(int i=;i<=n;i++){
scanf("%d%d",&s1[i],&s2[i]);
ans+=s2[i];
}
vs=;
vt=n+;
N=n+;
add(vs,N,k-q,);
for(int i=;i<=k;i++){
add(N,i,,);
}
for(int i=;i<=n;i++){
add(i,i+,k-q-p,);
if(i+k<=n)add(i,i+k,,s1[i]-s2[i]);
else add(i,vt,,s1[i]-s2[i]);
}
while(spfa());
printf("%d",ans);
return ;
}

【XSY2689】王子 - 网络流的更多相关文章

  1. plain framework 1 网络流 缓存数据详解

    网络流是什么?为什么网络流中需要存在缓存数据?为什么PF中要采用缓存网络数据的机制?带着这几个疑问,让我们好好详细的了解一下在网络数据交互中我们容易忽视以及薄弱的一块.该部分为PF现有的网络流模型,但 ...

  2. 网络流模板 NetworkFlow

    身边的小伙伴们都在愉快地刷网络流,我也来写一发模板好了. Network Flow - Maximum Flow Time Limit : 1 sec, Memory Limit : 65536 KB ...

  3. COGS732. [网络流24题] 试题库

    «问题描述:假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法.«编程任务: ...

  4. ACM/ICPC 之 有流量上下界的网络流-Dinic(可做模板)(POJ2396)

    //有流量上下界的网络流 //Time:47Ms Memory:1788K #include<iostream> #include<cstring> #include<c ...

  5. BZOJ 3144 [Hnoi2013]切糕 ——网络流

    [题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...

  6. bzoj3572又TM是网络流

    = =我承认我写网络流写疯了 = =我承认前面几篇博文都是扯淡,我写的是垃圾dinic(根本不叫dinic) = =我承认这道题我调了半天 = =我承认我这道题一开始是T的,后来换上真正的dinic才 ...

  7. hdu3549还是网络流

    最后一次训练模板(比较熟练了) 接下来训练网络流的建图 #include <cstdio> #define INF 2147483647 int n,m,ans,x,y,z,M,h,t,T ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

随机推荐

  1. postman测试实例--断言

    postman测试实例--断言 让我们来看看postman测试的一些例子. 其中大部分是作为内部postman片段. 大多数测试是为单行的JavaScript语句一样简单. 只要你想一个请求,你可以有 ...

  2. mongoDB authentication

    转自:http://blog.csdn.net/allen_jinjie/article/details/9235073 1. 最开始的时候,我们启动mongodb,但是不包含--auth参数: E: ...

  3. css 垂直居中方法总结

    工作中遇到垂直居中问题,特此总结了一下几种方式与大家分享.本文讨论的垂直居中仅支持IE8+ 1.使用绝对定位垂直居中 HTML <div class="container"& ...

  4. Django入门--模板标签、继承与引用

    一.模板标签 Django模板引擎提供的可以在模板中进行的各种逻辑操作,是函数调用的一种特殊形式,如循环.判断等功能,期语法规则为: {% tag %} content {% tag 参数1 参数2 ...

  5. CodeForcesGym 100676G Training Camp

    G. Training Camp Time Limit: 1000ms Memory Limit: 262144KB This problem will be judged on CodeForces ...

  6. jquery日历插件FullCalendar使用技巧

    原文链接:http://blog.csdn.net/u013493957/article/details/44920341   FullCalendar是一款基于jquery的日历控件,它有着很强大的 ...

  7. HDU 4353

    利用分式的性质可以很容易证明要求的是个三角形,这很简单.对于求三角形内的雷的个数,只需求出每条边上方有多少个雷,作一点运算即可.如 A,B,C(B是X轴坐标在中间的点),则AC(其上方的雷的个数)-A ...

  8. 定时任务为什么不用Timer

    在做定时任务的时候,有的同学可能能会用到Timer这个定时任务的辅助类, 可是使用它会有潜在的风险,风险例如以下, (1)时间计算不准确问题     由于Timer是以绝对时间计算定时任务的,会受到系 ...

  9. http格式(graph)

    http请求格式 http请求头 字段 http响应 http响应头字段

  10. 树莓派与window 10组成的物联网核心:让人失望

    去年春天,微软公布了自己的window系统与物联网系统的方案,该方案使用树莓派和window 10组成物联网的核心.树莓派是一个与window全然不同的执行在ARM构架下的系统. 是的,也许微软决心离 ...