洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)
题面
给定一个长度为\(L\)的序列\(A\)。然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\),即\(A\)是\(B\)的子串,则停止,
求序列\(B\)的期望长度。\(L ≤ 10^5\)
题解
不知道概率生成函数是什么的可以看看这篇文章,题解也在里面了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5,P=1e4;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int bin[N],kmp[N],a[N],n,p,res,pos;
int main(){
// freopen("testdata.in","r",stdin);
p=read(),bin[0]=1;fp(i,1,1e5)bin[i]=mul(bin[i-1],p);
for(int T=read();T;--T){
n=read();fp(i,1,n)a[i]=read();
kmp[0]=kmp[1]=0;
for(R int i=2,j=0;i<=n;++i){
while(j&&a[j+1]!=a[i])j=kmp[j];
j+=(a[j+1]==a[i]),kmp[i]=j;
}
pos=n,res=0;
while(pos)res=add(res,bin[pos]),pos=kmp[pos];
printf("%04d\n",res);
}
return 0;
}
洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)的更多相关文章
- 洛谷 P4548 - [CTSC2006]歌唱王国(概率生成函数)
洛谷题面传送门 PGF 入门好题. 首先介绍一下 PGF 的基本概念.对于随机变量 \(X\),满足 \(X\) 的取值总是非负整数,我们即 \(P(v)\) 表示 \(X=v\) 的概率,那么我们定 ...
- Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希
传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...
- 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差
[题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...
- luogu P4548 [CTSC2006]歌唱王国
传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...
- 【BZOJ1152】歌唱王国(生成函数,KMP)
[BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...
- [CTSC2006]歌唱王国
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...
- bzoi1152 [CTSC2006]歌唱王国Singleland
[CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...
- 洛谷P4389 付公主的背包--生成函数+多项式
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...
- 洛谷P4389 付公主的背包 [生成函数,NTT]
传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...
随机推荐
- css垂直居中方案
先介绍几种常见的垂直布局方式: 已知盒子具体宽度(宽度可以为百分比)(适用于居中浮动元素) 第一种: 给父元素相对定位,给子元素绝对定位 父布局 { position: relative; } 子布局 ...
- 135. Candy(Array; Greedy)
There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...
- spring+springmvc+mybatis+redis实现缓存
先搭建好redis环境 需要的jar如下: jdbc.driverClassName=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:330 ...
- SqlServer——系统函数
1) CASE CASE有两种使用形式:一种是简单的CASE函数,另一种是搜索型的CASE函数. [1]简单的 CASE 函数 Format: CASE input_expression WHEN w ...
- IOS操作系统上执行monkey测试
IOS操作系统上执行monkey测试 IOS操作系统不像Android系统那么方便,各种限制也比较多,目前我的建议还是直接在模拟器上执行monkey测试.如果需要在真机上面执行,可以参考文档: htt ...
- jquery Ajax跨域请求
这是jquery api文档对跨域请求的解析:如果获取的数据文件存放在远程服务器上(域名不同,也就是跨域获取数据),则需要使用JSONP类型.使用这种类型的话,会创建一个查询字符串参数 callbac ...
- HUST软工1501-1503班第4周作业成绩公布
说明 本次公布的成绩为第四周作业的结果: 第4周小组作业:WordCount优化 如果同学对作业结果存在异议,可以: 在毕博平台讨论区的第4周在线答疑区发帖申诉. 或直接在博客园本帖中进行评论进行申诉 ...
- sql查询层级分类
先上个效果图吧 CTE递归查询里面用了一些小的技巧,查询出结果以后在前端用表格展示出来,层级视觉效果还是很明显的 with tree as(select [ID],[Name],[Address],[ ...
- HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)
题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...
- O_DIRECT方式读取文件示例
#include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <sys/stat.h& ...